English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114014/145046 (79%)
Visitors : 52054299      Online Users : 306
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 應用數學系 > 學位論文 >  Item 140.119/67308
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/67308


    Title: 有關三元數列的探討
    A study about ternary sequences
    Authors: 林宥廷
    Contributors: 李陽明
    林宥廷
    Keywords: 三元數列
    一對一函數
    ternary sequence
    Date: 2013
    Issue Date: 2014-07-07 11:09:14 (UTC+8)
    Abstract: 長度為n的三元數列(0, 1, 2),探討(一)0為偶數個1為偶數個,或(二)0為偶數個1為奇數個,或(三)0為奇數個1為偶數個,或(四)0為奇數個1為奇數個的方法數時,就離散的傳統上來說是用遞迴關係去求解。本文將建構一對一函數,利用一對一函數的特性去求此問題的解,與以前的方法比較起來僅需要了解一對一函數的特性即可求解,易懂且不需要用到比較複雜的遞迴觀念。
    The problem of the number of ternary sequences of length n with :
    (a) 0 is even, 1 is even,
    (b) 0 is even, 1 is odd,
    (c) 0 is odd, 1 is even,
    (d) 0 is odd, 1 is odd,
    has been solved by recurrence relations before. We solve the problem by constructingone-to-one functions, and use the characteristics of one-to-one functions to solve this problem. Our method is simpler than those methods which have been done before.
    Reference: (1) Alan Tucker(1994),Applied Combinatorics(5th edition),John Wiley & Sons Inc。
    (2) C. L. Liu(2000),Introduction to Combinatorial Mathematics(International editions 2000),McGraw-Hill。
    (3) C. L. Liu,Elements of Discrete Mathematics 2nd Edition,McGraw-Hill。
    (4) J.H. van Lint, R.M. Wilson(2001),A Course in Combinatorics2 edition,Cambridge University Press。
    (5) Jiri Matousek, Jaroslav Nesetril(2008),Invitation to Discrete Mathematics,Oxford University Press。
    (6) Susanna S. Epp(2003),Discrete Mathematics with Applications,Cengage Learning。
    (7)張維格(2011),以雙射函數探討四元數列,國立政治大學應用數學系數學教學碩士在職專班碩士論文。
    (8)奇偶校驗位,維基百科。
    (9)中華民國身分證,維基百科。
    (10)詹承洲、施信毓、吳安宇,低密度奇偶校驗碼的實現與展望,台大系統晶片中心專欄。
    Description: 碩士
    國立政治大學
    應用數學研究所
    97751011
    102
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0097751011
    Data Type: thesis
    Appears in Collections:[應用數學系] 學位論文

    Files in This Item:

    File SizeFormat
    101101.pdf299KbAdobe PDF2373View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback