政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/65314
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 114014/145046 (79%)
造訪人次 : 52067140      線上人數 : 941
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/65314


    題名: Effects of surface charge and particle size of cell-penetrating peptide/nanoparticle complexes on cellular internalization.
    作者: Liu, Betty Revon;Chan, Ming-Huan;Chen, Hwei-Hsien;Lo, Shih-Yen;Huang, Yue-Wern;Lee, Han-Jung
    詹銘煥
    貢獻者: 神科所
    日期: 2013.09
    上傳時間: 2014-04-11 18:53:03 (UTC+8)
    摘要: Cell membranes are natural barriers that prevent macromolecules from permeating cells. The efficiency of exogenous materials entering cells relies on various strategies and factors. Cell-penetrating peptides (CPPs) are distinctive molecules that can penetrate cells by themselves, as well as carry cargoes into cells in both covalent and noncovalent manners. In this chapter, we use CPP-mediated delivery of nanomaterials to illustrate the importance of surface charge and size of nanoparticles on cellular uptake. We found that three different arginine-rich CPPs (SR9, HR9, and PR9) are able to form stable complexes with nanomaterials, including quantum dots (QDs) and DNAs, and the complexes can effectively internalize into cells. Our study demonstrated that zetapotential of CPP/cargo nanoparticulate complexes is a key predictor of transduction efficiency. On a different note, a combination of CPPs with cargoes resulted in complexes with various sizes. The most positively charged HR9/cargo complexes displayed the highest protein transduction efficiency. The correlation coefficient analysis demonstrated a high correlation between zeta-potential and transduction efficiency of CPP/DNA complexes. A logarithmic curve was plotted with zeta value against transduction efficiency with an R-squared value of 0.9454. With similar surface charges, particle sizes could affect cellular uptake efficiency of CPP/QD complexes. Collectively, our findings elucidate that zeta-potential of CPP/cargo nanoparticulate complexes plays a major role in determining transduction efficiency, while particle sizes of CPP/cargo nanoparticulate complexes have a minor effect in cell permeability.
    關聯: Cell Membrane: Molecular Structure, Physiochemical Properties and Interactions with the Environment., pp.43-57
    Nova Science Publishers , 2013
    ISBN: 9781628084573
    資料類型: book/chapter
    顯示於類別:[神經科學研究所] 專書/專書篇章

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    4357.pdf1549KbAdobe PDF21332檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋