English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114205/145239 (79%)
Visitors : 52559643      Online Users : 893
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/65056


    Title: 共變異數矩陣估計方法 對效率前緣與投資組合之影響
    The Impact of Estimating Covariance Matrix on Efficient Frontier and Investment Portfolio
    Authors: 葉冠廷
    Contributors: 郭維裕
    葉冠廷
    Keywords: 投資組合績效
    共變異數矩陣
    全域最小變異組合
    Date: 2013
    Issue Date: 2014-04-01 11:14:10 (UTC+8)
    Abstract: 1952年Markowitz 提出平均數-變異數投資組合模型(Mean-Variance Model,簡稱MV 模型)後,開創了投資組合理論的先河,他認為風險與報酬是影響資產配置的兩大因素,其中Markowitz在估計共變異數矩陣時,使用樣本共變異數矩陣模型(Sample Covariance Model)做運算。雖然MV 模型具權威性,但仍存在估計誤差的問題,因此許多共變異數矩陣的估計方法應運而生,包括Litterman and Winklemann(1998)的高盛衰退率共變異數矩陣模型以及Ledoit and Wolf(2003)的單一指數濃縮估計法。本文比較各種共變異數矩陣的效率前緣(efficient frontier);並採用全域最小變異組合(Global Minimum Variance Point),檢驗樣本共變異數矩陣模型、高盛衰退率共變異數矩陣模型及單一指數濃縮估計法所建構的投資組合,其績效是否優於市值加權的台灣50指數;且以滾動視窗(rolling window)方式,比較三種方法績效之異同優劣。本研究實證結果顯示三種方法相對於大盤均有較佳表現,各方法間則以單一指數濃縮估計法表現較佳。
    Markowitz indicated Mean-Variance Model and initiated the portfolio theory in 1952. He proved that risk and return are two important components to impact on asset allocation, and used sample covariance model to calculate covariance matrix. However, MV model exists estimation error. Therefore, many covariance matrix methods was proposed including Goldman Sachs decay rate covariance matrix model of Litterman and Winklemann(1998), and shrinkage to single-index covariance matrix method of Ledoit and Wolf(2003). This study compares the efficient frontier build by different covariance matrix methods. Also, this study adopts global minimum portfolio and rolling window to discuss performance of portfolio constructed by these three methods. The conclusion is that the performance of portfolio constructed by these three covariance matrix methods is better than market index, and shrinkage to single-index covariance matrix is the best method to construct portfolio.
    Reference: 中文文獻:
    1.范沛綱,2006,「最佳投資組合研究-以台灣50 指數為例」,國立中央大學,碩士論文。
    英文文獻:
    1.Alexander, C. and Dimitriu A. 2005. “Indexing, cointegration and equity market regimes.” International Journal of Finance and Economics, 10, 213-231.
    2.Alexander K. and Christoph M. 2006. “Estimating the global minimum Variance Portfolio” Schmalenbach Business Review, Vol. 58, 332-348.
    3.Benoit Mandelbrot. 1963. “The Variation of Certain Speculative Prices.” The Journal of Business, University of Chicago Press, vol. 36, pages 394
    4.Bera, A.K. and Higgins, M. L. 1992. “A Test for Conditional Heteroskedesticity in Time Series Models.” Journal of Time Series Analysis, 13, 501-519
    5.Bengtsson, C. and J. Holst. 2002. “On Portfolio Selection: Improved Covariance Matrix Estimation for Swedish Asset Returns.” Working paper, Lund University and Lund Institute of Technology
    6.Chan, L. K. C., Karceski, J. and Lakonishok, J. 1999. “On Portfolio Optimization: Forecasting Covariances and Choosing the Risk Model,” Review of Financial Studies, Vol.12, 937-974.
    7.Chopra, V.K. and Ziemba W.T. 1993. “The Effect of Errors in Means,Variances,and Covariances on Optimal Portfolio Choice ,“ Journal of Portfolio Management,19,6-11.
    8.David J. Disatnik and Simon Benninga. 2007. “Shrinking the Covariance Matrix-Simpler is better.” The Journal of Portfolio Management.33.4:55-63.
    9.Eugene F. Fama. 1965. “ The Behavior of Stock-Market Prices.” The Journal of Business, Vol. 38, No. 1. pp. 34-105.
    10.Efron, Bradley, and Carl Morris. 1977. “Stein’s Paradox in Statistics.” Scientific American, 236, 119-127.
    11.Edwin J. Elton, Martin J. Gruber, Christopher R. Blake. 1996. “Survivor bias and mutual fund performance.” The Review of Financial Studies, Vol.9, No.4, pp. 1097-1120.
    12.Fama, E. F. 1970. “Efficient Capital Markets: A Review of Theory and Empirical Work”, Journal of Finance 25, 383-417
    13.Gary P. Brinson, Brian D. Singer and Gilbert L. Beebower. 1991. “Determinants of Portfolio Performance II: An Update.” Financial Analysts Journal, May-June, 40-48.
    14.Holmes, M. 2007. “Improved Study Finds Index Management Usually Outperforms Active Management.” Journal of Financial Planning 20, 48-58.
    15.Jorion, Philippe. 1977. “Bayes-Stein Estimation for Portfolio Analysis.” Journal of Financial and Quantitative Analysis, 279-292.
    16.Jagannathan, Ravi and Tongshu Ma. 2003. “Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps.” Journal of Finance 58, 1651-1683.
    17.Litterman, R. and K. Winkelmann.1998. “Risk Management Series:Estimating Covariance Matrices.”
    18.Lo, Andrew W., and Pankaj N. Patel. 2008. “130/30: The new long-only.” Journal of Portfolio Management 34, 12-38
    19.Ledoit, Olivier, and Michael Wolf. 2003. “Improved Estimation of the Covariance Matrix of Stock Returns with an Application to Portfolio Selection.” Journal of Empirical Finance, 10, 603-621.
    20.Markowitz, H.1952. “Portfolio Selection.” Journal of Finance.
    21.Michaud, R.1989. “The Markowitz Optimization Enigma:Is Optimized Optimal.” Financial Analysis Journal.
    22.Merton, R. C. 1980. “On Estimating the Expected Return on the Market: An Exploratory Investigation,” Journal of Financial Economics, Vol.8, 323-361.
    23.Stein, Charles. 1955. “Inadmissibility of the Usual Estimator for the Mean of a Multivariate Normal Distribution.” In Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability. Berkeley: University of California Press, 197-206.
    24.Sharpe, William F. 1963. “A Simplified Model for Portfolio Analysis.” Management Science, vol. 9, no. 1, 277-293.
    25.Sorensen, E. H., K. L. Miller, and V. Samak. 1998. “Allocating Between Active and Passive Management.” Financial Analysts Journal 54, 18-31.
    26.Sz. Pafka and I. Kondor. 2004. “Estimated correlation matrices and portfolio optimization” Physica A343, 623-634
    Description: 碩士
    國立政治大學
    國際經營與貿易研究所
    100351037
    102
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G1003510371
    Data Type: thesis
    Appears in Collections:[國際經營與貿易學系 ] 學位論文

    Files in This Item:

    File SizeFormat
    index.html0KbHTML2350View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback