English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113656/144643 (79%)
Visitors : 51718813      Online Users : 650
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/64775


    Title: A Quantitative Comparison of the Lee-Carter Model under Different Types of Non-Gaussian Innovations
    Authors: 王昭文;黃泓智;劉議謙
    Wang, Chou-Wen;Huang, Hong-Chih;Liu, I-Chien
    Contributors: 風管系
    Keywords: stochastic mortality model;non-Gaussian distributions;mortality jumps
    Date: 2011.01
    Issue Date: 2014-03-20 17:49:00 (UTC+8)
    Abstract: In the classical Lee-Carter model, the mortality indices that are assumed to be a random walk model with drift are normally distributed. However, for the long-term mortality data, the error terms of the Lee-Carter model and the mortality indices have tails thicker than those of a normal distribution and appear to be skewed. This study therefore adopts five non-Gaussian distributions—Student’s t-distribution and its skew extension (i.e., generalised hyperbolic skew Student’s t-distribution), one finite-activity Lévy model (jump diffusion distribution), and two infinite-activity or pure jump models (variance gamma and normal inverse Gaussian)—to model the error terms of the Lee-Carter model. With mortality data from six countries over the period 1900–2007, both in-sample model selection criteria (e.g., Bayesian information criterion, Kolmogorov–Smirnov test, Anderson–Darling test, Cramér–von-Mises test) and out-of-sample projection errors indicate a preference for modelling the Lee-Carter model with non-Gaussian innovations.
    Relation: The Geneva Papers on Risk and Insurance - Issues and Practice, 36(4), 675-696
    Data Type: article
    DOI 連結: http://dx.doi.org/10.1057/gpp.2011.20
    DOI: 10.1057/gpp.2011.20
    Appears in Collections:[風險管理與保險學系] 期刊論文

    Files in This Item:

    File Description SizeFormat
    675696.pdf303KbAdobe PDF21396View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback