Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/64352
|
Title: | 雲端環境下應用Google電子試算表於分散式儲存架構平台之研究 A Study of Distributed Storage Architecture Platform by Using Google Spreadsheet in Cloud Environment |
Authors: | 連偉志 Lian, Wei Jhih |
Contributors: | 楊建民 連偉志 Lian, Wei Jhih |
Keywords: | Google電子試算表 海量資料 分散式儲存架構 雲端儲存 Google Spreadsheets Big Data Distributed Storage Architecture Cloud Storage |
Date: | 2013 |
Issue Date: | 2014-03-03 15:34:48 (UTC+8) |
Abstract: | 資訊科技不斷進步,近年來使用雲端儲存和運算服務之人數漸多,更多的企業盡可能保留全數資料以進行更強大的分析來預測產業環境的變動。但資料成長速度極快,過去兩年所建立的資料即為當今世界總量的90%。而現今雲端服務收費與存放於雲的資料量成正比,許多中小企業在成本和資訊安全考量下,可能會放棄雲端服務供應商所提供的解決方案。 本研究利用Google電子試算表做為資料庫能大量儲存資料且使用空間免費之優勢以及本地端資料庫安全性高、小量資料存取速度極快的優點,結合兩者並配合本研究開發之資料處理相關模組,提出並且實作驗證一個分散式儲存架構平台,並以商店銷售商品之相關流程為平台應用案例,將資料分割儲存在本地與雲端兩端之資料庫中,以達到節省本地資料庫之儲存空間,亦能將非關鍵資料大量存放至Google電子試算表之優點。 於案例應用中,本研究成功驗證此雲端分散式儲存架構平台之可行性與應用層面廣,除解決原本Google試算表作為資料庫之資料查詢限制之問題外,並於資料切割分散儲存的過程額外發現此種儲存於雲的方式亦能達到部分資訊安全,且在資料量越大的情況下,能比傳統本地端資料庫之儲存方式省下更多空間。此平台架構提供企業一個進入門檻較低且成本較低的分散式儲存平台,在資料庫備份及後援上線上也有快速上線的優勢。 Continuing innovation in information technology, using cloud storage and cloud computing services, the number of users gradually become more in the past years. More and more Small and Medium Enterprises (SME) try to keep all the information in order to carry out a more powerful analysis to predict changes in the industrial environment. With the rapid growth of data, the data in the past two years to establish the total world today, accounting for more than 90%. And today, cloud service charges and the amount of data stored in the cloud is proportional to the cost. Base on cost and information security consideration, many SME may abandon the cloud service providers to provide solutions. In this study, we use the advantages of Google spreadsheets: huge amount of storage, and the advantages of local database: higher security, access fast on small amount of data. Combine both of two advantages and coordinate the data processing module of this study. This study proposes and inspects a distributed storage architecture platform, with shops selling merchandise flow as a platform for application cases, dividing data stored in local and cloud database, to save local storage space, and to reach a large number of non-critical data stored in Google spreadsheets advantages. In the application cases, this study successfully validated cloud platform for distributed storage architecture and the application of the feasibility of wide-ranging, in addition to solving the original Google Spreadsheets data as the database query limit issues, and cutting dispersion in the data storage process additional findings of this storage method can achieve part of information security, and in the case of the larger amount of data can be compared to the traditional local database storage method saves more space. This platform architecture provides SME lower barriers to entry and low cost of distributed storage platform, database backup and backup easy backup on the line also has the advantage of fast on-line backup. |
Reference: | 一、 英文文獻 1. Alashqur, A. M., Su, S. Y., & Lam, H. (1989, July). OQL: a query language for manipulating object-oriented databases. In Proceedings of the 15th international conference on Very large data bases (pp. 433-442). Morgan Kaufmann Publishers Inc.. 2. Chen, P. P. S. (1976). The entity-relationship model—toward a unified view of data. ACM Transactions on Database Systems (TODS), 1(1), 9-36. 3. Codd, E. F. (1970). A relational model of data for large shared data banks.Commun. ACM, 13(6), 377-387. 4. Connolly, T. M., & Begg, C. E. (2004). Database Solutions: A step-by-step guide to building databases. Pearson Education. 5. Date, C. J., & Darwen, H. (1987). A Guide to the SQL Standard (Vol. 3). Reading (Ma) et al.: Addison-Wesley. 6. Dropbox. (2012). “Thanks a (hundred) million.” from https://blog.dropbox.com/2012/11/thanks-a-hundred-million/. 7. Elmasri, R. (2008). Fundamentals Of Database Systems, 5/E. Pearson Education India. 8. Google Drive. (2006). “Overview of Google Sheets.” from https://support.google.com/drive/bin/answer.py?hl=en&answer=140784&topic=20322&ctx=topic.
9. Google Drive. (2013). “Start Google Drive.” from https://www.google.com/intl/en/drive/start/index.html. 10. Jarke, M., & Koch, J. (1984). Query optimization in database systems. ACM Computing surveys (CsUR), 16(2), 111-152. 11. Laudon, K. C. & Traver, C. G. (2011). Management information systems: managing the digital firm. Pearson, 07 March 2011, Chapter6 Information systems Organizations and Strategy p.143 12. McHugh, J., & Widom, J. (1999). Query optimization for XML. 13. Microsoft ORM. (2002). “Visio-Based Database Modeling in Visual Studio .NET Enterprise Architect.” from http://msdn.microsoft.com/en-us/library/aa290380(v=vs.71).aspx. 14. Rackspace.com. (2010). “Rackspace Open Sources Cloud Platform; Announces Plans to Collaborate with NASA and Other Industry Leaders on OpenStack Project” from http://www.rackspace.com/blog/newsarticles/rackspace-open-sources-cloud-platform-announces-plans-to-collaborate-with-nasa-and-other-industry-leaders-on-openstack-project/. 15. Ramakrishnan, R., & Gehrke, J. (2000). Database management systems. Osborne/McGraw-Hill. 16. Ries, D. R. (1970). The effects of concurrency control on database management system performance (No. UCB/ERL-M79/20). CALIFORNIA UNIV BERKELEY ELECTRONICS RESEARCH LAB. 17. Steve Wexler. (2010). “CTERA Rolls Out Channel-Friendly Cloud Storage Portal“ from http://www.channelinsider.com/c/a/Storage/CTERA-Rolls-Out-ChannelFriendly-Cloud-Storage-Portal-863639/. 18. w3schools.com SQL. (2013). “SQL Tutorial.” from http://www.w3schools.com/sql/. 19. Zend. (2012). “Company Overview.” from http://www.zend.com/en/company/
二、中文文獻 1. IBM. (2013). “為企業海量資料賦予意義.” 網站來源:http://www-01.ibm.com/software/tw/data/bigdata/. 2. iThome. (2013). “QuickCORE結合Hadoop技術協助企業快速分析巨量資料.” 網站來源: http://www.ithome.com.tw/itadm/article.php?c=79125 3. Microsoft SharePoint. (2012). “關於SkyDrive Pro的5個提問!.” 網站來源: http://blogs.msdn.com/b/sharepoint_cht/archive/2012/11/27/skydrive-pro-5.aspx. 4. VR-ZONE.com. (2013). “第二個10億僅花4年光景,Seagate硬碟總出貨量突破20億顆.”網站來源: http://chinese.vr-zone.com/55282/seagate-reach-a-new-milestones-for-harddisk-now-is-20-billions-03122013/. 5. 行政院經建會. (2010). “雲端運算趨勢下我國產業之機會.”網站來源: http://www.cepd.gov.tw/m1.aspx?sNo=0013141. 6. 張德厚. (2008). “與學界合作Google推廣「雲端運算技術」.” 中廣新聞網. 2008年1月30日。 7. 黃三益. (2012)., 資料庫的核心理論與實務,前程出版社,台北,2012。 8. 新浪科技. (2008). “戴爾在美申請「雲計算」商標.” 網站來源: http://tech.sina.com.cn/it/2008-08-03/10032367986.shtml. 9. 錢大群. (2013). “2013天下經濟論壇/人才、研發、海量資料分析 企業轉型三大關鍵.” 網站來源: http://www.cw.com.tw/article/article.action?id=5046275. |
Description: | 碩士 國立政治大學 資訊管理研究所 100356039 102 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0100356039 |
Data Type: | thesis |
Appears in Collections: | [資訊管理學系] 學位論文
|
Files in This Item:
File |
Size | Format | |
603901.pdf | 2538Kb | Adobe PDF2 | 405 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|