政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/61666
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 113869/144892 (79%)
造访人次 : 51893764      在线人数 : 553
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻

    书目数据导出

    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/61666


    题名: 基於字典釋義關聯方法的同義詞概念擷取:以《同義詞詞林(擴展版)》為例
    其它题名: A Definition-based Shared-concept Extraction within Groups of Chinese Synonyms: A Study Utilizing the Extended Chinese Synonym Forest
    作者: 趙逢毅;鍾曉芳
    Chao, F. Y. August;Chung, Siaw-Fong
    贡献者: 英文系
    关键词: 同義概念;同義詞詞林;釋義;辭典
    Shared Concept;Synonym;Chinese Synonym Forest;Dictionary Definition
    日期: 2012.12
    上传时间: 2013-11-12 18:10:48 (UTC+8)
    摘要: 同義詞在資訊擷取與語義分類上是很重要的語料資訊,但將兩詞歸納為同義其原由則值得令人探討。從語義(sense)的觀點來說,多義詞組歸到特定同義組合中,其語義中應有與該類字詞同義集合。此類型的代表為《同義詞詞林》(梅家駒、竺一鳴、高蘊琦與殷鴻翔,1983),將漢語同義字詞區分成具結構類別。而從計算語言學方法來說,同義詞關聯需要參考語料庫中詞組的出現頻率,輔以機器學習方法來計算同義詞相似度。然而前者專家分類原則是透過語感進行,若沒有對同義詞的類別原則加以定義,則後人便會產生對同義詞的混淆。後者機器學習方法使用統計方法來辨別相似詞彙,則會缺乏語義的辨別。為了瞭解同義詞組的概念內涵,本研究提出基於辭典釋義文字的關聯計算原則,試透過計算共同擁有的釋義文字出現比率,以解析兩詞彙間所包涵之釋義概念。並且以《同義詞詞林(擴展版)》為例,從釋義義涵的角度列舉出適合詮釋該詞組的詞彙,突顯該類別所包涵的語義。最後,比較SketchEngine (Kilgarriff et al.,2004)中所取得的同義詞(similar words)之間的差異。本研究計算結果雖然會受辭典釋義內容影響,但辭典釋義內容相較於人工分類原則與統計語料庫所得的數值資料,較能從詞義上詮釋詞彙之間的共有概念。我們希望能透過釋義關聯方法更瞭解詞彙間的交集概念,亦希望能在同義詞的語義計算上,提供辭典釋義與詞條編寫上的思考。
    Synonym groups can serve as resourceful linguistic metadata for information extraction and word sense disambiguation. Nevertheless, the reasons two words can be categorized into a particular synonym group need further study, especially when no explanation is available as to why any two words are synonymous. Lexical resources, such as the Chinese Synonym Forest (or Tongyici Cilin) (Mei etal. 1983), assemble lexical items into hierarchical categories via manual categorization. Other than this, statistical measures, such as co-existing probability, have been adopted widely to verify synonymous relationships. Nevertheless, a purely statistical method does not provide description that can help interpret why such a synonymous relationship occurs. We propose a novel method for the study of shared concepts within any synonym group by comparing co-existing words in the dictionary definition of each member in the group. The co-existing words are seen as the representatives of shared concepts that can be used for interpretating any hidden meaning among members of a synonym group. We also compare our results with the thesaurus function in the Sketch Engine (Kilgarriff et al. 2004), which uses statistical data in the form of Sketch scores. The results show that our method can produce concept words according to dictionary definitions, but this method also has its limitations, as it orks only with a finite number of synonyms and under limited computing resources.
    關聯: 中文計算語言學期刊(Special Issue on Chinese Lexical Resources: Theories and Applications), 18(2), 35-56
    数据类型: article
    显示于类别:[英國語文學系] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    3556.pdf526KbAdobe PDF21220检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©  2006-2025  - 回馈