政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/61587
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 114014/145046 (79%)
造訪人次 : 52061293      線上人數 : 750
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    政大機構典藏 > 資訊學院 > 資訊科學系 > 期刊論文 >  Item 140.119/61587
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/61587


    題名: A Novel Hash-based Approach for Mining Frequent Itemsets over Data Streams Requiring Less Memory Space
    作者: 陳良弼
    Wang ,En Tzu;Chen,Arbee L. P.
    貢獻者: 資科系
    關鍵詞: Data stream;Data mining;Frequent itemset;Hash-based approach;False positive
    日期: 2009.08
    上傳時間: 2013-11-11 16:28:52 (UTC+8)
    摘要: In recent times, data are generated as a form of continuous data streams in many applications. Since handling data streams is necessary and discovering knowledge behind data streams can often yield substantial benefits, mining over data streams has become one of the most important issues. Many approaches for mining frequent itemsets over data streams have been proposed. These approaches often consist of two procedures including continuously maintaining synopses for data streams and finding frequent itemsets from the synopses. However, most of the approaches assume that the synopses of data streams can be saved in memory and ignore the fact that the information of the non-frequent itemsets kept in the synopses may cause memory utilization to be significantly degraded. In this paper, we consider compressing the information of all the itemsets into a structure with a fixed size using a hash-based technique. This hash-based approach skillfully summarizes the information of the whole data stream by using a hash table, provides a novel technique to estimate the support counts of the non-frequent itemsets, and keeps only the frequent itemsets for speeding up the mining process. Therefore, the goal of optimizing memory space utilization can be achieved. The correctness guarantee, error analysis, and parameter setting of this approach are presented and a series of experiments is performed to show the effectiveness and the efficiency of this approach.
    關聯: Data Mining and Knowledge Discovery, 19(1) , 132-172
    資料類型: article
    DOI 連結: http://dx.doi.org/10.1007/s10618-009-0129-2
    DOI: 10.1007/s10618-009-0129-2
    顯示於類別:[資訊科學系] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    132172.pdf2992KbAdobe PDF21245檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋