English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113656/144643 (79%)
Visitors : 51726601      Online Users : 623
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/60516


    Title: 台股風險值分析
    Value at risk based on independent component analysis
    Authors: 曾順延
    Contributors: 郭維裕
    曾順延
    Keywords: 風險值
    獨立成份分析
    Date: 2009
    Issue Date: 2013-09-05 16:47:56 (UTC+8)
    Abstract: 利用獨立成份分析的功能,解決求解投組分配的困難,再用LAVE,GARCH,跟RiskMetrics 三種不同的變異數方法去配適獨立成份的動態過程,並利用台股指數進行一天的風險值預期,共一千天,最後用回顧測試檢定模型的優劣
    The Value at Risk (VaR) measures the potential loss in value of risky asset or portfolio over a defined period for a given confidence interval. The traditional way needs to estimate corresponding distribution and process of portfolio, which is very difficult. Independent component analysis (ICA) is designed for detection of blind folded signals and retrieves out of a high-dimensional time series stochastically independent source components. We can use the property of independence to estimate distribution of portfolio easily. This paper uses three different volatility estimate methods in conjunction with independent component process to calculate value at risk.
    Reference: [1] S.D. Campbell, A review of backtesting and backtesting procedures, Journal of Risk 9, pp.1–17, 2006
    [2] J. Cardoso ,High-order Contrasts for Independent Component Analysis, Neural Computation11(1), 157-192.1999
    [3] J.F Cardoso, Dependence, correlation and Gaussianity in independent component analysis, The Journal of Machine Learning Research, v.4 n.7-8, p.1177-1203, October 1 - November 15, 2004
    [4]R.J Carroll, and D. Ruppert, Transformation and Weighting in Regression, Chapman and Hall, New York, 1988
    [5] S. M. Cha and Laiwan Chan, Applying Independent Component Analysis to Factor Model in Finance, Intelligent Data Engineering and Automated Learning - IDEAL 2000, Data Mining, Financial Engineering and Intelligent Agents, ed. K.S. Leung, L.W. Chan and H. Meng, Springer, pp 538-544, 2000
    [6] Y. CHEN, W. Härdle, S.O. Jeong, Nonparametric risk management with generalized hyperbolic distributions. SFB 649, discussion paper 2005-001.
    [7] Y. CHEN, W. HÄRDLE, V. SPOKOINY, Portfolio value at risk based on independent components analysis, J. Comput. Appl. Math, 205 pp. 594—607,2007
    [8] P. Comon, Independent Component Analysis: a new concept?, Signal Processing, Elsevier, 36(3):287--314 (The original paper describing the concept of ICA),1994
    [9] Duffee and Pan, An Overview of Value at Risk, Journal of Derivatives, Spring 1997
    [10] A. Hyvärinen, NewApproximations of Differential Entropy for Independent ComponentAnalysis and Projection Pursuit, MIT Press, Cambridge,MA, pp. 273–279.1998
    [11] A. Hyvärinen, Independent Component Analysis: ATutorial CIS, Helsinki University of Technology, Finland,April, 1999.
    [12] A. Hyvärinen, E. Oja, Independent component analysis: algorithms and applications, Neural Networks 13 411–430.1999
    [13] A. Hyvärinen, J. Karhunen, E. Oja, Independent Component Analysis, Wiley, NewYork, 2001.
    [14] O. V. LEPSKI, A problem of adaptive estimation in Gaussian white noise. Theory Probab. Appl. 35 454-466,1990
    [15] O. V. LEPSKI, E. MAMMEN, and V. POKOINY, Optimal spatial adaptation to inhomogeneous smoothness: An approach based on kernel estimates with variable bandwidth selectors. Ann. Statist. 25 929-947, 1997
    [16] L. D. Lathauwer, An introduction to independent component analysis, 14:123–149, 2000
    [17] D. Mercurio, V. Spokoiny, Statistical inference for time-inhomogeneous volatility models, Ann. Statist., 577–602, 2004
    [18] V. SPOKOINY, Estimation of a function with discontinuities via local polynomial fit with an adaptive window choice. Ann. Statist. 26 1356-1378, 1998
    Description: 碩士
    國立政治大學
    國際經營與貿易研究所
    97351025
    98
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0097351025
    Data Type: thesis
    Appears in Collections:[國際經營與貿易學系 ] 學位論文

    Files in This Item:

    File SizeFormat
    102501.pdf2598KbAdobe PDF2298View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback