政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/60218
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 113822/144841 (79%)
造訪人次 : 51865570      線上人數 : 322
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    政大機構典藏 > 商學院 > 資訊管理學系 > 學位論文 >  Item 140.119/60218
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/60218


    題名: 文件距離為基礎kNN分群技術與新聞事件偵測追蹤之研究
    A study of relative text-distance-based kNN clustering technique and news events detection and tracking
    作者: 陳柏均
    Chen, Po Chun
    貢獻者: 楊建民
    陳柏均
    Chen, Po Chun
    關鍵詞: 文字探勘
    kNN
    事件偵測與追蹤
    分類分群
    Text Mining
    kNN
    Events Detection and Tracking
    Classification and Clustering
    日期: 2010
    上傳時間: 2013-09-04 16:59:37 (UTC+8)
    摘要: 新聞事件可描述為「一個時間區間內、同一主題的相似新聞之集合」,而新聞大多僅是一完整事件的零碎片段,其內容也易受到媒體立場或撰寫角度不同有所差異;除此之外,龐大的新聞量亦使得想要瞭解事件全貌的困難度大增。因此,本研究將利用文字探勘技術群聚相關新聞為事件,以增進新聞所帶來的價值。
    分類分群為文字探勘中很常見的步驟,亦是本研究將新聞群聚成事件所運用到的主要方法。最近鄰 (k-nearest neighbor, kNN)搜尋法可視為分類法中最常見的演算法之一,但由於kNN在分類上必須要每篇新聞兩兩比較並排序才得以選出最近鄰,這也產生了kNN在實作上的效能瓶頸。本研究提出了一個「建立距離參考基準點」的方法RTD-based kNN (Relative Text-Distance-based kNN),透過在向量空間中建立一個基準點,讓所有文件利用與基準點的相對距離建立起遠近的關係,使得在選取前k個最近鄰之前,直接以相對關係篩選出較可能的候選文件,進而選出前k個最近鄰,透過相對距離的概念減少比較次數以改善效率。
    本研究於Google News中抽取62個事件(共742篇新聞),並依其分群結果作為測試與評估依據,以比較RTD-based kNN與kNN新聞事件分群時的績效。實驗結果呈現出RTD-based kNN的基準點以常用字字彙建立較佳,分群後的再合併則有助於改善結果,而在RTD-based kNN與kNN的F-measure並無顯著差距(α=0.05)的情況下,RTD-based kNN的運算時間低於kNN達28.13%。顯示RTD-based kNN能提供新聞事件分群時一個更好的方法。最後,本研究提供一些未來研究之方向。
    News Events can be described as "the aggregation of many similar news that describe the particular incident within a specific timeframe". Most of news article portraits only a part of a passage, and many of the content are bias because of different media standpoint or different viewpoint of reporters; in addition, the massive news source increases complexity of the incident. Therefore, this research paper employs Text Mining Technique to cluster similar news to a events that can value added a news contributed.
    Classification and Clustering technique is a frequently used in Text Mining, and K-nearest neighbor(kNN) is one of most common algorithms apply in classification. However, kNN requires massive comparison on each individual article, and it becomes the performance bottlenecks of kNN. This research proposed Relative Text-Distance-based kNN(RTD-based kNN), the core concept of this method is establish a Base, a distance reference point, through a Vector Space, all documents can create the distance relationship through the relative distance between itself and base. Through the concept of relative distance, it can decrease the number of comparison and improve the efficiency.
    This research chooses a sample of 62 events (with total of 742 news articles) from Google News for the test and evaluation. Under the condition of RTD-based kNN and kNN with a no significant difference in F-measure (α=0.05), RTD-based kNN out perform kNN in time decreased by 28.13%. This confirms RTD-based kNN is a better method in clustering news event. At last, this research provides some of the research aspect for the future.
    參考文獻: 中文部分
    1.巫啟台(2002)。文件之關聯資訊萃取及其概念圖自動建構 (碩士論文),國立成功大學資訊工程學系碩士論文。
    2.陳克健、陳正佳、林隆基 (1986)。中文語句的研究-斷詞與構詞。中央研究院技術報告,TR-86-006。
    3.陳昱絃 (2007)。以螞蟻演算法探勘推薦系統上之分類規則,國立成功大學工程科學系碩士論文。
    4.陳崇正 (2009)。應用網路書籤與VSM相似度演算法於強化實踐社群的形成,國立中正大學資訊工程研究所碩士論文。
    5.黃孝文 (2010)。雲端運算服務環境下運用文字探勘於語意註解網頁文件分析之研究,國立政治大學資訊管理研究所碩士論文。
    6.戴尚學 (2003)。運用事件偵測與追蹤技術於中文多文件摘要之研究,國立雲林科技大學資訊管理系碩士論文。
    7.謝邦昌 (2006)。資料採礦與商業智慧,台北市:鼎茂圖書出版股份有限公司。

    英文部分
    1.Allan ,J. , Papka, R. & Lavrenko , V. (1998). On-line New Event Detection and Tracking. In Proceedings of ACM SIGIR, pp37-45.
    2.Chen, K. J., Kiu, S. H. (1992). Word Identification for Mandarin Chinese Sentences. Fifth International Conference on Computational Linguistics, pp.101-107.
    3.Cover, T.M., Hart, P.E. (1967). Nearest Neighbor Pattern Classification, IEEE Transaction on Information Theory. v.IT-13 n.1, pp.21-27.
    4.Fayyed, U., Piatetsky-Shapiro, G. and Smyth, P. (1996). The KDD Process of Extracting Useful Knowledge from Volumes of Data. , Communication of the ACM, v.39, pp. 27-34.
    5.Fan, C.K., Tsai, W.H. (1998). Automatic Word Identification in Chinese Sentences by the Relaxation Technique. Computer Proceeding of Chinese and Oriental Languages, pp.33-56.
    6.Feldman, R., Dagan, I. (1995). Knowledge Discovery in Textual Data base(KDT). Proceedings of the first ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.112-117.
    7.Han , Jiawei, Kamber, Micheline (2006). Data Mining: Concepts and Techniques
    8.Jain, A.K., Murty, M.N. & Flynn, P.J.(1999). Data Clustering, A Review. ACM Computing Surveys, v.31 n.3, pp.264-323.
    9.Joachims , T.(1998). Text Categorization with Support Vector Machines: Learning with Many Relevant Features. Proceedings of the European Conference on Machine Learning Springer, pp. 137–142.
    10.Krishnapuram, Raghu, Joshi, Anupam, Yi, Liyu (2001). Low-Complexity Fuzzy Relational Clustering Algorithm for Web Mining. IEEE Transactions on Fuzzy System, v.9 n.4, pp.595-607.
    11.Li, B.Y., Lin, S., Sun, C.F. & Sun, M.S. (1991). A Maximal Matching Automatic Chinese Word Segmentation Algorithm using Corpus Tagging for Ambiguity Resolution. R.O.C. Computational Linguistics Conference, Taiwan, pp.135-146.
    12.MacQueen, J. B. (1967). Some Methods for Classification and Analysis of Multivariate Observations. Proceedings of 5-th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, University of California Press, pp.281-297.
    13.Berry, M., Linoff, G. (2000). Mastering Data Mining, The Art & Science of Customer Relationship Management, Wiley Publishing.
    14.Nie, Jian-Yun, Brisebois, Martin & Ren, Xiaobo (1996). On Chinese Text Retrieval. Conference Proceedings of SIGIR, pp.225-233.
    15.Popescu, A.(2001). Implementation of Term Weighting in a Simple IR System. Personal course project, University of Helsinki.
    16.Roiger, Richard, Geatz, Michael (2003). Data Mining: A Tutorial Based Primer. Addison Wesley Higher Education.
    17.Rousseeuw, P.J., Kaufman, L., Trauwaert, E.(1996). Fuzzy Clustering using Scatter Matrices. Computational Statistics and Data Analysis, v 23, pp.135-151.
    18.Salton, G., McGill, M. (1983). Introduction to Modern Information Retrieval, New York: McGraw-Hill.
    19.Salton, G., Wong, A., Yang, C. S. (1975). A Vector Space Model for Automatic Indexing. Communications of the ACM, v.18 n.11, pp.613-620.
    20.Sebastiani, F. (2002). Machine Learning in Automated Text Categorization. ACM Computing Surveys, v.34 n.1, pp.1-47.
    21.Singh, L., Scheuermann , P. & Chen , B. (1997). Generating Association Rules from Semi-Structured Documents Using an Extended Concept Hierarchy. ACM IKM, pp.193-200.
    22.Sproat, R, Shih , C., 1990. A Statistical Method for Finding Word Boundaries in Chinese Text. Computer Processing of Chinese and Oriental Languages, pp. 336-351.
    23.Teng, W.-G., Lee, H.-H.(2007). Collaborative Recommendation with Multi-Criteria Ratings. Journal of Computers (Special Issue on Data Mining), v.17 n.4, pp.69-78.
    24.Yang, Yiming (1997), An Evaluation of Statistical Approaches to Text Categorization. Technical Report CMU-CS-97-127, Carnegie Mellon University.
    25.Yang, Y., Pierce, T. & Carbonell, J.(1998). A Study on Retrospective And On-Line Event Detection. Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp.28-36.
    26.Yang , Yiming, Lin, Xin (1999). A Re-examination of Text Categorization Methods. Proceedings of the 22nd Annual International ACM-SIGIR Conference on Research and Development in Information Retrieval, pp.12-29.
    27.Yang, Y., Carbonell, J.G., Brown, R., Pierce, T., Archibald, B. T. & Liu, X. (1999). Learning Approaches for Detecting and Tracking News Events. IEEE Intelligent Systems, v.14 n.4, pp.32-43.
    28.Yang, Y., Ault, T., & Pierce, T. (2000). Improving Text Categorization Methods for Event Tracking. Proceedings of the 23rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp.65-72.
    29.You , Jia-Ming, Chen, Keh-Jiann (2006). Improving Context Vector Models by Feature Clustering for Automatic Thesaurus Construction , Proceedings of the Fifth SIGHAN Workshop on Chinese Language Processing.
    描述: 碩士
    國立政治大學
    資訊管理研究所
    98356015
    99
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0098356015
    資料類型: thesis
    顯示於類別:[資訊管理學系] 學位論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    601501.pdf999KbAdobe PDF2348檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋