English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113648/144635 (79%)
Visitors : 51628865      Online Users : 588
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 應用數學系 > 學位論文 >  Item 140.119/60089
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/60089


    Title: 國一學生一元一次不等式錯誤類型分析之研究
    A study of seventh grade students` misconceptions and error types of linear inequalities in one unknown
    Authors: 陳瑾儀
    Contributors: 譚克平
    陳瑾儀
    Keywords: 錯誤類型
    一元一次不等式
    error types
    linear inequalities in one unknown
    Date: 2011
    Issue Date: 2013-09-04 15:17:16 (UTC+8)
    Abstract: 本研究的主要目的是探討國一學生在一元一次不等式的錯誤類型,並分析錯誤原因。
    本研究的設計採用調查研究法,共分成兩個階段進行,第一階段為準備階段,主要工作為文獻探討、分析國中數學教材、自編「一元一次不等式錯誤類型分析研究」試卷,進行試卷的施測,預試樣本共56名國三學生,抽樣方式非隨機取樣,採方便取樣進行,再由預試結果經修改編製正式施測之試卷。第二階段為正式施測與分析階段,正式施測樣本共30名國一學生,男生12名、女生18名,根據施測結果,依成績分成高分組、中分組、低分組三組,再隨機抽取男女生各2名進行半結構的晤談,以瞭解學生答題的想法,分析學生錯誤的原因。
    本研究的主要結果如下:
    一、不等式答題表現在文字問題的錯誤比率、空白比率最高。
    二、在一元一次不等式的錯誤類型為:
    (一)同義詞的轉換:1.不等號的同義詞概念;2.不等號的符號認知。
    (二)範圍解與圖示:1.數的運算;2.無法判斷範圍解;3.數線的認知;4.不等號的圖示認知;5.不等號的方向。
    (三)解不等式:1.不等號改變方向;2.去括號;3.數的運算;4.遺漏或增加符號;5.移項的錯誤;6.等量公理的誤用;7.未化簡;8.不等號概念的錯誤9.多項錯誤;10.抄錯題目或答案;11.胡亂猜測答案。
    (四)文字問題:1.無法理解題意;2.列式錯誤;3.三角形面積公式錯誤;4.忽略題目的已知條件;5.答案遺漏或錯誤;6.不等號的概念;7.數的運算;8.多項錯誤9.不等號的同義詞概念。
    三、一元一次不等式的錯誤原因:1.先備知識的不足;2.資料使用錯誤;3.新舊學習經驗的互相干擾;4.錯誤的使用運算規則;5.由題目所給數字直接產生答案;6.不清楚題目設計或文字敘述而產生錯誤;7.忽略題目所給條件或答案不夠完備而產生錯誤;8.沒有從離散量概念延伸至連續量概念。
    The main purpose of this study is to investigate “seventh grade students` misconceptions and error types of linear inequalities in one unknown”and analyze the causes of the errors.
    This study adopts survey research and includes two phases. The first stage is the preparation phase, including literature review, analysis of mathematics textbooks, self-compiled test papers on “misconceptions and error types of linear inequalities in one unknown,” and the pretest. The pretest adopts convenience sampling- totally 56 students from ninth grade. The results were later revised to compile the formal test papers. The second stage is the official survey and analysis phase. The 30 samples are seventh grade students, 12 boys and 18 girls. According to the results of the test, these sample students are divided into three groups-high, medium and low performances. Out of each group, two boys and two girls are randomly sampled and conduct semi-structured interviews to analyze the causes of the errors.
    The findings of this study are as follows:
    1.Most of the errors are due to text problems.
    2.Error types of linear inequalities in one unknown are:
    (1)The conversion of synonyms: a. the concept of synonyms; b. symbolic cognitive.
    (2)The range of solution: a. calculation; b. to determine the range of solution; c. number line; d. notation of inequality sign; e. direction of inequality sign.
    (3)Problem-solving in inequality: a. to reverse symbol; b. to remove bracket; c. calculation; d. to omit or add symbols; e. transposition errors; f. isometric axiom errors; g. lack of simplification; h. the misconception of inequality sign; i. multinomial errors; j. to copy wrong questions or answers; k. to speculate answers.
    (4)Text problem: a. not to understand the questions; b. mistakes in formulating expressions; c. triangle area formula errors; d. to ignore provided conditions; e. omission or wrong answers; f. notation of inequality sign; g. calculation; h. multinomial errors; I. the concept of synonyms.
    3.Cause of errors:
    (1) lack of prior knowledge; (2) to use wrong data; (3) the mutual interference of old and new learning experiences; (4) to use wrong calculating rules; (5) to generate answers from given numbers of the questions; (6) not to understand description of the questions; (7) to ignore the provided conditions or the answers are not complete; (8) not extend to continuous volume.
    Reference: 一、中文文獻
    王文科、王智弘(2009)。教育研究法。台北市:五南圖書出版有限公司。
    王如敏(2004)。國二學生解一元一次方程式錯誤類型分析研究。國立高雄師範大學數學系碩士論文。
    江慶育(2011)。國三學生在浮力情境中對作用力辨識與力平衡理解之探討。國立師範大學科學教育研究所碩士論文。
    吳德邦、吳順治(1989)。解題導向的數學教學策略。台北市:五南圖書出版有限公司。
    李盈賢(2007)。高雄市國二學生一元二次方程式迷思概念之研究。國立高雄師範大學碩士論文。
    林炎全、洪萬生、楊康景松譯(1983)。數學史-數學思想的發展上冊。九章出版社。Morris Kline 原著 Mathematical Thought from Ancient to ModernTime。
    林炎全(2004)。不等概念之建構與操算能力之培養探討。行政院國家科學委員會專題計畫成果報告。編號:NSC92-2521-S-142-002。
    林清山(1992)。教育心理學-認知取向。台北市:遠流出版事業股份有限公司。Richard E. Mayer原著 Educational Psychology : A Cognitive Approach。
    林福來(1991)。數學的診斷評量。教師天地,54,32-38。
    林碧珍(1985)。數學概念的形成與學習。國教世紀月刊,21(1),1-4。
    邱美虹(2000)。概念改變研究的省思與啟示。科學教育學刊,8(1),1-34。
    金玉麒(1987)。國中生絕對值及不等式概念的錯誤分析及補救教學。行政院國家科學委員會專題計畫成果報告。編號:NSC75-01110-S017-005。臺北市:國科會微縮小組。
    洪有情(2007)。青少年數學概念的「學習與教學」研究—子計畫一:青少年代數運算概念的「學習與教學」研究。行政院國科會專題研究計劃報告。編號:NSC-95-2521-S-003-010。
    洪碧芳(2001)。青少年的絕對值與不等式概念發展研究。行政院國家科學委員會專題計畫成果報告。編號:NSC89-2511-S240-001。
    袁媛(1993)。國中一年級學生的文字符號概念與代數文字題的解題研究。國立高雄師範大學碩士論文。
    莊淑鈴(2005)。高雄地區國二生解二元一次聯立方程式錯誤類型之分析。國立高雄師範大學數學系碩士論文。
    郭汾派(1991)。數學科教學輔導論文集,111-128。台北:國立台灣師範大學中等教育輔導委員會。
    許秀如(2007)。國中生文字符號概念的發展。國立彰化師範大學科學碩士論文。
    郭丁熒(1992)。追根究底談錯誤:有關學生錯誤的二十個問題。國教之友,44(2),18-23。Kathleen m. Fisher F Joseph Isaac Linpson原著。
    張幼賢(2011)。國民中學數學第二冊。翰林出版社。
    張素鎔(1987a)。初等代數的學習困難。科學教育月刊,100,23-29。
    張素鎔(1987b)。解方程式的學習困難。科學教育月刊,100,30-32。
    張福春、李姿霖(2007)。不等式之基本解題方法。數學傳播,31(2),38-61。
    張春興、林清山(1994)。教育心理學。台北市:臺灣東華書局。
    張景媛(1994)。國中生數學學習歷程整合模式之研究。國立台灣師範大學教育心理與輔導學系教育心理學報,27,141-174。
    陳英貴(2007)。國中三年級學生一次不等式解題策略及錯誤類型之研究。國立中山大學教育研究所碩士論文。
    陳春惠(2007)。台南市國二學生一元一次不等式錯誤類型之分析研究。國立高雄師範大學數學教育研究所碩士論文。
    陳啟明(1991)。發展紙筆測驗以探究高一學生對直流電路的迷思概念。國立彰化師範大學科學教育研究所碩士論文。
    黃台珠(1984)。概念的研究及其意義。科學教育月刊,66,44-55。
    黃敏晃(1987)。如何解數學題?數學解題策略簡介。科學月刊,18(7),515-522。
    黃敏晃(1991)。淺談數學解題。敎與學,23,2-15。
    黃國瑋(2007)。台南縣國一學生解不等式應用問題解題歷程之分析研究。國立高雄師範大學數學教育研究所碩士論文。
    楊弢亮(1992)。中學數學教學法通論。九章出版社。
    秦麗花(1995)。國小數學學障兒童數學解題錯誤類型分析。特殊教育季刊,55,33-38。
    鄭麗玉(1998)。如何改變學生迷思概念。教師之友,39(5),28-36。
    鄭麗玉(2009)。認知心理學:理論與應用。台北市:五南圖書出版有限公司。
    劉錫麒(1993)。數學思考教學研究。台北市:師大書苑。
    簡珮華(2000)。數學的故事。九章出版社。
    謝青龍(1995)。從「迷思概念」到「另有架構」的概念改變。科學教育月刊,180,23-29。
    謝夢珊(2000)。以不同符號表徵未知數對國二學生解方程式表現之探討。國立台北師範學院數理教育研究所碩士論文。
    鐘聖校(1995)。國小自然科課程教學研究。台北市:五南圖書出版有限公司。

    二、英文文獻
    Bazzini, L., & Tsamir, P. (2004). Algebraic equations and inequalities: Issues for research and teaching. Proceedings of the 28th Conference of the International Group for the Psychology of Mathematics Education, 1, 137-166.
    Blanco, L. J., & Garrote, M. (2007). Difficulties in learning inequalities in students of the first year of pre-university education in Spain. Eurasia Journal of Mathematics, Science & Technology Education, 3, 221-229.
    Benander, L., & Clement, J. (1985). Catalogue of error patterns observed in course on basic mathematics. (ERIC No. ED 287672).
    Collis, K. F. (1975). The development of formal reasoning. Newcastle, Australia: University of Newcastle.
    Duit, R., & Treagust, D. F. (1995). Students` conceptions and constructivist teaching approaches. In B. J. Fraser & H. J. Walberg (Eds.), Improving science education (p p. 46-69). Chicago, Illinois: The University of Chicago Press.
    Kantowski, M. G. (1981). Mathematics Education Research:Implications for the 80’s. Reston, VA: National Council of Teachers of Mathematics.
    Kilpatrick, J. (1985). A retrospective account of the past twenty-five years of research on teaching mathematical problem solving. In E. A. Silver (Ed.), Teaching and learning mathematical problem solving: Multiple research perspectives (pp. 1-15). Hilsdale, NJ: Lawrence Erlbaum Associates.
    Klausmeier, H. J. (1992). Concept learning and concept teaching. Educational Psychologist, 27 (3), 267-286.
    Matz, M. (1982). Towards a process model for high school algebra errors. In D. Sleeman & J. S. Brown (Eds.), Intelligent tutoring systems (pp. 26-50). London: Academic Press.
    National Council of Teacher of Mathematics (1980). Problem solving be the focus of school mathematics in the 1980: An agends for action. Palo Alto, CA: Dale Seymour Publications.
    National Council of Teachers of Mathematics (2000). Principles and standards for school Mathematics. Reston, VA: Author.
    Newell, A., & Simon, H. A . (1972). Human problem solving. Englewood Cliffs, NJ: Prentice Hall.
    Pines, A. L. (1980). A model for program development and evaluation: The formative role of summative evaluation and research in science education.
    Polya, G. (1945). How to solve it. Princeton, NJ: Princetion University Press.
    Rowntree, R. V. (2009). Students’ understandings and misconceptions of algebraic inequalities. School Science and Mathematics, 109(6), 311-312.
    Skemp, R. R. (1979). Goals of learning and qualities of understanding. Mathematics Teaching, 88, 44-49.
    Skemp, R. R. (1987). The psychology of learning of mathematics. Hillsdale, NJ: Lawrence Erlbaum Associates.
    Schoenfeld, A. H. (1980). Teaching problem-solving skills. American Mathematical Monthly, 87(10), 794-805.
    Treagust, D. F. (1988). Development and use of diagnostic tests to evaluate students` misconceptions in science. International Journal of Science Education, 10(2), 159-169.
    Tsamir, P., & Almog, N. (2001). Students` strategies and difficulties:The case of algebraic inequalities. International Journal of Mathematical Education in Science and Technology, 32, 513-524.
    Vergnaud, G. (1983). Multiplicative structures. In R. Lesh & M. Landu (Eds.), Acquisition of mathematics concepts and process (pp. 127-174). NY: Academic Press.
    Vergnaud, G. (1987). Problem solving and concept development in thelearning of mathematics. E. A. R. L. I., Second Meeting, Tabingen, September.
    Warren, E. (2006). Comparative mathematical language in the elementary school: A longitudinal study. Educational Studies in Mathematics, 62, 169-189.
    Whitney, H. (1985). Taking responsibility in school mathematics education. In L. Streefland
    (Ed.), Proceedings of the Ninth International Conference for the Psychology of Mathematics Education (Vol. 2). Utrecht: State University of Utrecht.
    Wickelgren, W. A. (1974). How to solve problems. New York, NY: Freeman.
    Description: 碩士
    國立政治大學
    應用數學系數學教學碩士在職專班
    98972007
    100
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0098972007
    Data Type: thesis
    Appears in Collections:[應用數學系] 學位論文

    Files in This Item:

    File SizeFormat
    200701.pdf951KbAdobe PDF21577View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback