政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/60087
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114014/145046 (79%)
Visitors : 52066616      Online Users : 418
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/60087


    Title: 開票一路領先的對射證明
    A bijective proof of leading all the way
    Authors: 韓淑惠
    Han, Shu-Hui
    Contributors: 李陽明
    李陽明

    Li, Young-Ming
    韓淑惠
    Han, Shu-Hui
    Keywords: 一路領先
    對射證明
    leading all the way
    bijective proof
    Date: 2011
    Issue Date: 2013-09-04 15:16:53 (UTC+8)
    Abstract: 本文所討論的是開票一路領先問題。假設有A、B兩位候選人,開票結果A得m票、B得n票,開票過程中A的票數一路領先B的票數,我們將開票過程建立在平面的方格上,由(0,0)開始,A得1票記錄成向量(1,0),B得1票記錄成向量(0,1),分解成路徑後,A一路領先的開票方法數,就是對角線下的全部路徑數。但是算式及轉換步驟有點複雜,所以我們希望能建構一種簡單的模型對應來解決這個問題。
    本文找出A至少一路領先m票的方法數,會對應到m×n的全部路徑走法,最後證明這樣的對應是一對一且映成,並猜想若有多位候選人,其中一人一路領先其他候選人的開票過程,也會有相似的對應方法。
    Suppose A and B are candidates for all election. A receives m votes and B receives n votes. If A stays ahead of B as the ballots are counted, we can think of a ballot permutation as a lattice path starting at (0,0), where votes for A are expressed as east (1,0) and votes for B are expressed as north (0,1).
    How to calculate the number of paths that A is always in the lead? We just count these paths from (0,0) to (m,n) that are under or touch the diagonal. However, the formula of combinatorial mathematics is not easy to obtain. So we hope to construct a model to resolve this problem.
    In this paper, we establish a one-to-one correspondence. The ways of A to receive at least m votes are always ahead the same as counting paths from (0,0) to (m,n). Finally, we find a bijective proof in the ballot problem. If there are many candidates, it will be a similar correspondence of one candidate leading the others.
    Reference: [1] Hilton, P. and Pedersen, J., The Ballot Problem and Catalan Numbers, Nieuw Archief voor Wiskunde 8 (1990), pp. 209-216.
    [2] Joseph Louis François Bertrand, Solution d`un problème, Comptes Rendus de l`Académie des Sciences (1887), pp. 369.
    [3] Marc Renault, Four Proofs of the Ballot Theorem, Mathematics Magazine, Vol.80, No.5 (2007), pp. 345-352.
    [4] Weisstein, Eric W., Motzkin Number, From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/MotzkinNumber.html
    [5] 楊蘭芬, 一個有關開票的問題, 政治大學應用數學系數學教學碩士在職專班碩士論文(2009),台北市。
    [6] 羅富僑, 一個二項等式的對射證明, 政治大學應用數學系數學教學碩士在職專班碩士論文(2009),台北市。
    [7] 侯宗誠、許德瑋, 由蟲子問題衍生一路領先與Motzkin路徑之對應及推廣, 2010台灣國際科學展覽會優勝作品專輯(2010), 台北市:國立台灣科學教育館。
    [8] 戴久永, 機率名題二則漫談, 數學傳播,第四卷第四期(1980),頁17-25。
    Description: 碩士
    國立政治大學
    應用數學系數學教學碩士在職專班
    98972001
    100
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0098972001
    Data Type: thesis
    Appears in Collections:[Department of Mathematical Sciences] Theses

    Files in This Item:

    File SizeFormat
    200101.pdf6345KbAdobe PDF22150View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback