政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/59704
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 114205/145239 (79%)
造訪人次 : 52396922      線上人數 : 468
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    政大機構典藏 > 理學院 > 心理學系 > 學位論文 >  Item 140.119/59704
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/59704


    題名: 類別學習的個別差異分析:以潛在剖面技術為例
    Use of latent profile analysis to identify individual difference phenotypes in categorical learning
    作者: 鍾德政
    貢獻者: 楊立行
    鍾德政
    關鍵詞: 類別學習
    個別差異
    潛在剖面分析
    日期: 2010
    上傳時間: 2013-09-03 13:27:28 (UTC+8)
    摘要: 自1990年開始,有越來越多的研究者開始重視類別學習表現的個別差異,即不同的受試者為何會在相同的分類作業中使用不同的策略。在過去,我們透過知識分化的現象去瞭解人們個別差異的分別,個別差異的分析可以幫助我們瞭解人與人之間的變異性與獨特性,然而,隨著這方面的研究逐漸增多,個別差異因素對於心理歷程的重要性不斷的被放大,但在過去類別學習的研究中對於個別差異的分析仍然一直沒有太深入的探討,主要是因為個別差異的分析結果,充滿了太多的不確定性以及未知可能性。在上述的狀況下,使用過去研究常用的分類方法,如非階層群聚分析中的k-means群聚分析法,必須先設定要分類組別數情狀下,未知可能性的組別可能就會被忽略,甚至被硬性併到其他組別,不但導致整體資料的遺失,嚴重的情況下還會使研究的效果無法突出。
    為了避免過去分類時分析方法的缺點,所以本研究使用潛在剖面分析幫助分類學習中知識分化的分組,潛在剖面分析並不像K-Means聚類法與階層式聚類法一開始就要決定組別數目,而是取決於不同的組數數目時誰有最佳的適合度統計量。 相信使用潛在剖面分析可以避免知識分化中未知可能性組別的遺失,此點已在本研究的三個分析中可以得到證實。
    本研究分別對於幾種不同類型的類別學習作業進行潛在剖面分析,透過研究中的四個實驗,以期開發出一套適合分析分類策略對於個別差異影響的方法。企圖證明在不同類型的實驗結構下,依然能使用潛在剖面分析來分類,且分類的結果可以找出適當的分組以及發現實驗未預期的組別。並結合結構方程混合模型,進一步去釐清在知識分化現象中,影響分類策略選擇的因子。
    參考文獻: 邱皓政。(民97年)。潛在類別模式:原理與技術。台北市:五南。
    俞信安。(民96年)。分類研究中的自發性知識分化現象。國立中正大學心理學研究所碩士論文,未出版,嘉義縣。
    楊立行。(民96年)。分類學習與工作記憶。未發表之國科會專題計畫。
    蔡涵如。(民97年)。工作記憶與類別學習中的知識分化現象。國立成功大學認知科學研究所碩士論文,未出版,台南市。
    Ashby, F. G., & Maddox, W. T.(2005). Human category learning. Annual Review of Psychology. 56, 149-178.
    Ashby, F. G., Maddox, W. T., & Bohil, C. J. (2002). Observational versus feedback training in rule-based and information-integration category learning. Memory & Cognition, 30, 666-667.
    Baddeley, A. D. (1986). Working memory. Oxford: Oxford university.
    Conway, A. R. A., & Engle, R. W. (1994). Working memory and retrieval: A resource-dependent inhibition model. Journal of Experimental Psychology: General, 123, 354-373.
    Conway, A. R. A., & Engle, R. W. (1996). Individual differences in working memory capacity: More evidence for a general capacity theory. Memory, 4, 577-590.
    Conway, A. R. A., Kane, M. J., & Engle, R. W. (2003). Working memory capacity and its relation to general intelligence. Trends in Cognitive Science, 7, 547-552.
    Cowan, N. (1998). An embedded-process model of working memory. In A. Miyake & P. shah (Eds.), Models of working memory: Mechanisms of active maintenance and executive control. New York: Cambridge University Press.

    Engle, R. W. (2002). Working memory capacity as executive attention. Current Directions in Psychological Science, 11, 19–23.
    Engle, R. W., Cantor, J., & Carullo, J. J. (1992). Individual differences in working memory and comprehension: A test of four hypotheses. Journal of Experimental Psychology: Learning, Memory, and Cognition, 18, 972-992.
    Kane, M. J., & Engle, R. W. (2003).Working-memory capacity and the control of attention: The contribution of goal neglect, response competition, and task set to Stroop interference. Journal of Experimental Psychology: General, 132, 47-70.
    Kalish, M., Lewandowsky, S., & Davies, M. (2005). Error-Driven Knowledge Restructuring in Categorization. Journal of Experimental Psychology: Learning, Memory, and Cognition, 31(5), 846-861.
    Kalish, M., Lewandowsky, S., & Kruschke, J. K. (2004). Population of linear experts: Knowledge partitioning and function learning. Psychological Review, 111, 1072-1099.
    Lewandowsky, S., Kalish, M., & Ngand, S. K. (2002). Simplified learning in complex situations: Knowledge partitioning in function learning. Journal of Experimental Psychology: General, 131,163-193.
    Lewandowsky, S., & Kirsner, K. (2000). Knowledge portioning: context-dependent use of expertise. Memory & Cognition, 28, 295-305.
    Lewandowsky, S., Robert, L., & Yang, L-X. (2006). Knowledge partitioning in categorization: Boundary conditions. Memory & Cognition. 34, 1163-1178.
    Maddox, W. T., & Ashby, F. G. (2004). Dissociating explicit and procedural-learning based systems of perceptual category learning. Behavioral Processes, 66, 309–332.


    McKinley, S. C., & Nosofsky, R. M. (1995). Investigations of exemplar and decision bound models in large, ill-defined category structures. Journal of Experimental Psychology: Human Perception & Performance, 21(1), 128-148.
    Medin, D. L., & Schaffer, M. M. (1978). Context theory of classification learning. Psychological Review, 85, 207-238.
    Medin, D. L., & Schwanenflugel, P. J. (1981). Linear separability in classification learning. Journal of Experimental Psychology: Human Learning and Memory, 7, 355-368.
    Medin, D. L., & Shoben, E. J. (1988). Context and structure in conceptual combination. Cognitive Psychology, 20, 158-190.
    Nosofsky, R. M. (1984). Choice, similarity, and the context theory of classification. Journal of Experimental Psychology: Learning, Memory, and Cognition, 10(1), 104-114.
    Nosofsky, R. M. (1998). Selective attention and the formation of linear decision boundaries: Reply to maddox and ashby (1998). Journal of Experimental Psychology: Human Perception & Performance, 24(1), 322-339.
    Nosofsky, R. M., Palmeri, T. J., & McKinley, S. C. (1994). Rule-plus-exception model of classification learning. Psychological Review, 101(1), 53-79.
    Oberauer, K., Lange, E., & Engle, R. W. (2004). Working memory capacity and resistance to interference. Journal of, Memory and Language, 51, 80-96.
    Oberauer, K., Süβ, H. -M., Wilhelm, O., & Wittmann, W. W. (2003). The multiple faces of working memory — Storage, processing, supervision, and coordination. Intelligence, 31, 167−193.
    Oberauer, K., Schulze, R., Wilhelm, O., & Süβ, H. -M. (2005). Working memory and intelligence — Their correlation and their relation: A comment on Ackerman, Beier, and Boyle (2005).
    Süβ, H. -M., Oberauer, K.,Wittmann,W.W.,Wilhelm, O., & Schulze, R. (2002).Working memory capacity explains reasoning ability— and a little bit more. Intelligence, 30, 261−288.
    Tuholsky, S. W., Engle, R. W., & Baylies, G. C. (2001). Individual differences in working memory capacity and enumeration. Memory & Cognition, 29, 484-492.
    Turner, M. L., & Engle, R. W. (1989). Is working memory task dependent? Journal of, Memory and Language, 28, 127-154.
    Unsworth, N., & Engle, R. W. (2005). Individual differences in working memory capacity and learning: Evidence from serial reaction time task. Memory & Cognition, 33, 213-220.
    Yang, L.-X., & Lewandowsky, S. (2003). Context-gated knowledge partitioning in categorization. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28, 663-679.
    Yang, L.-X., & Lewandowsky, S. (2004). Knowledge partitioning in categorization: constraints on exemplar models. Journal of Experimental Psychology: Learning, Memory, and Cognition, 30, 1045-1064.
    描述: 碩士
    國立政治大學
    心理學研究所
    97752011
    99
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0097752011
    資料類型: thesis
    顯示於類別:[心理學系] 學位論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    201101.pdf2726KbAdobe PDF2765檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋