English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114205/145239 (79%)
Visitors : 52562182      Online Users : 892
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 應用數學系 > 學位論文 >  Item 140.119/59638
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/59638


    Title: Python平行化在SCMDS上之應用
    The application of parallel Python in SCMDS
    Authors: 李沛承
    Lee, Pei Cheng
    Contributors: 曾正男
    Tzeng, Jengnan
    李沛承
    Lee, Pei Cheng
    Keywords: SC-MDS
    Python
    多核心
    Date: 2012
    Issue Date: 2013-09-03 10:05:13 (UTC+8)
    Abstract: 近年來資料產生的數量遠超過過去可處理的數量,以現今的個人電腦使用傳統的方法已經無法處理大資料的運算與分析,所以改善傳統的方法與平行化為必經的方向,本論文以拆解合成-多元尺度法的平行化為主要討論對象,除了介紹Python程式語言及其相關套件如何撰寫平行化程式,我們將拆解合成-多元尺度法從原本的單核心版本改進為多核心版本,並且探索拆解合成-多元尺度法在平行化過程中的計算效能,藉以了解拆解合成-多元尺度法在平行化計算時的參數要如何設定,使得平行化的SC-MDS可以有最高的計算效率。經實驗證明多核心底下的SC-MDS平行化又把SC-MDS單核心的效能做個再次的提升。
    In recent years, the number of generated data is growing fast such that it is infeasible to process by using traditional methods. So improving traditional methods and developing paralled computing methods are important issues. The main contribution of this thesis is to delelope the parallel version of the split-and-combine multidimensional scaling method(SC-MDS). We will fistly introduce fundamental python program, the basic python packages and the python multi-core program. Then we will implement the serial core version of SC-MDS to the multi-core version. Moreover, we will discover the efficiency of the multi-core version of SC-MDS. Then we can understand how to determine the parameters of the parllel version of SC-MDS. By our experimental results, we successfully implement the serial core of SC-MDS to the faster parallel version of SC-MDS.
    Reference: [1] David Griffths、Paul Barry. 深入淺出程式設計. 歐萊禮, 2011.
    [2] Paul Barry. 深入淺出Python. 歐萊禮, 2011.
    [3] Ingwer Borg and Patrick J. F. Groenen. Modern multidimensional scaling. Springer Series in Statistics. Springer, New York, second edition, 2005. Theory and applications.
    [4] TOIBE Software BV. Tiobe programming community index, 2013. [online]http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html.
    [5] Matthew Chalmers. A linear iteration time layout algorithm for visualising high-dimensional data. In Proceedings of the 7th conference on Visualization `96, VIS `96, pages 127-ff., Los Alamitos, CA, USA, 1996. IEEE Computer Society Press.
    [6] Pei-Chi Chen. Optimal grouping and missing data handling for split-and-combine multidimensional scaling. 2008.
    [7] Michael A. A. Cox and Trevor F. Cox. Multidimensional scaling. In Handbook of Data Visualization, Springer Handbooks Comp.Statistics, pages 315{347. Springer Berlin Heidelberg, 2008.
    [8] Pearu Peterson Eric Jones, Travis Oliphant et al. Open source scientific tools for python, 2001. [online] http://www.scipy.org/.
    [9] Python Software Foundation. About python, 2005. [online] http://www.python.org/about/.
    [10] Python Software Foundation. affinity 0.1.0, 2005. [online] https://pypi.python.org/pypi/affinity.
    [11] Python Software Foundation. Process-based \\threading" interface, 2005. [on-line] http://docs.python.org/2/library/multiprocessing.html.
    [12] Swaroop C H. Python入門, 2013. [online] http://files.swaroopch.com/python/byte_of_python.pdf.
    [13] Alistair Morrison, Greg Ross, and Matthew Chalmers. Fast multidimensional scaling through sampling, springs and interpolation. Information Visualization,2:68{77, 2003.
    [14] Mark Pilgrim. Dive into python, 2004. [online] http://www.diveintopython.net/toc/index.html.
    [15] Warren S. Torgerson. Multidimensional scaling. I. Theory and method. Psy-chometrika, 17:401{419, 1952.
    [16] Jengnan Tzeng. Python入門, 2009. [online] http://dl.dropboxusercontent.com/u/2688690/python_note.html.
    [17] Jengnan Tzeng. Split-and-combine singular value decomposition for large-scale matrix. J. Appl. Math., pages Art. ID 683053, 8, 2013.
    [18] Guido van Rossum. Python tutorial, 2008. [online] http://docs.python.org/2.5/tut/tut.html.
    Description: 碩士
    國立政治大學
    應用數學研究所
    99751006
    101
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0099751006
    Data Type: thesis
    Appears in Collections:[應用數學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    100601.pdf2285KbAdobe PDF2767View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback