English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114205/145239 (79%)
Visitors : 52584698      Online Users : 995
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/58733


    Title: 國外金融機構違約預警模型--Merton模型之應用
    The Default Predicted Model of Foreign Financial Institutions--An Application of Merton Model
    Authors: 郭名峻
    Contributors: 蔡政憲
    郭名峻
    Keywords: 信用風險衡量模型
    違約事件
    Merton模型
    預期違約機率
    財務變數
    Logistic迴歸
    Date: 2012
    Issue Date: 2013-07-01 17:59:04 (UTC+8)
    Abstract: 有鑑於信用風險衡量模型之廣泛使用,以及預測金融機構違約事件之重要性,本研究欲建立能有效預測金融機構違約事件之模型。其中Merton模型之概念被廣泛的應用,包含著名之KMV公司亦以Merton模型之概念建立信用風險管理機制,因此本研究選擇Merton模型之產出-預期違約機率(Expected Default Frequency, EDF)作為預測違約事件之主要變數。
    本研究以國外56家金融機構,於2007至2009年共140筆樣本資料,資料內容包含股價以及財務變數。實證方法為先以各公司之股價資訊透過Merton模型計算各樣本之預期違約機率,作為Logistic迴歸模型之自變數進行分析。之後另外加入財務變數嘗試增進模型之解釋能力。此外,本研究亦修正模型之設定以檢視在更貼近真實世界的假設下,模型之預測能力是否有提升。本研究之實證結果發現,單以預期違約機率所建立之違約預測模型即有良好之預測能力,即使再加入其他變數並進行假設的修正,對於模型預測效果提升並不顯著。因此本研究肯定Merton模型以公司之股價資訊衡量違約風險之概念。
    Reference: 1.Altman, E. I, 1968, Financial Ratios, Discriminant Analysis and the Prediction of
    Corporate Bankruptcy, Journal of Finance, 23, 578-609.
    2.Altman, E.I., Haldeman R. G., and Narayanan P., 1977, ZETA analysis: A New Model to Identity Bankruptcy Risk of Corporations, Journal of Banking and Finance, 64-75.
    3.Vulpes, G., and Brasili, A., 2006, Banking integration and co-movements in EU banks’ fragility, University Library of Munich, Germany.
    4.Aziz, A., and Lawson, G. H., 1989, Cash Flow Reporting and Financial Distress Model: Testing of Hypotheses, Financial Management, 18, 55-63.
    5.Beaver, W.H., 1966, Financial Ratios as Predictors of Failure, Journal of
    Accounting, 77-111.
    6.Benos, A., and Papanastasopoulos, G., 2007, Extending the Merton model: A hybrid approach to assessing credit quality, Mathematical and computer modelling, 46, 47-68.
    7.Black, F., and Scholes, M., 1973, The Pricing of Options and Corporate Liabilities, Journal of Political Economy, 81, 637-659.
    8.Coats, P. K., and Fant, L. F., 1993, Recognizing Financial Distress Using a Neural
    Network Tool, Financial Management, 22, 142-155.
    9.Crosbie, P. and Bohn, J., 2003, Modeling Default Risk, KMV corporation.
    10.Delianedis, G. and Geske, R., 1998, Credit Risk and Risk Neutral Default Probabilities: Information About Migrations and Defaults, Anderson School of Management.
    11.Duan, J. C., and Wang, T, 2012, Measuring Distance-to-Default for Financial and Non-Financial Firms, Global Credit Review, 2, 95-108.
    12.Gentry, J. A., Newbold, P. and Whitford, D. T., 1985. Classifying Bankrupt Firms with Funds Flow Components, The Journal of Accounting Research , 23, 146-160.
    13.Gropp, R., Vesala, J., and Vulpes, G., 2004, Market indicators, bank fragility, and indirect market discipline, Economic Policy Review, 10.
    14.Chan-Lau, J.A., Jobert, A., and Kong, J., 2004, An Option-Based Approach to Bank Vulnerabilities in Emerging Markets, International Monetary Fund.
    15.Koh, H. C. and Tan, S. S., 1999, A neural network approach to the prediction of going concern status, Accounting and Business Research, 29, 211-216.
    16.Le Courtois, O., and Quittard-Pinon, F., 2006, Risk-neutral and actual default probabilities with an endogenous bankruptcy jump-diffusion model, Asia-Pacific Financial Markets, 13, 11-39.
    17.Martin, D., 1977, Early Warning of bank failure: A logit regression approach, Journal of Banking and Finance, 1, 249-276.
    18.Merton, R. C., 1974, On the Pricing of Corporate Debt: The Risk Structure of Interest Rates, Journal of Finance, 29, 449-70.
    19.Nasir, M.L., John, R.I., Bennett, S.C., Russell, D.M., and Patel, A., 2000, Predicting Corporate Bankruptcy using Artificial Neural Networks, Journal of Applied Accounting Research, 5, 30-52.
    20.Ohlson, J. A. 1980, Financial ratios and the probabilistic prediction of bankruptcy, Journal of Accounting Research, 18, 109-131.
    21.Pompe, P. and Bilderbeek, J., 2005, The Prediction of Bankruptcy of Small- and Medium-Sized Industrial Firms, Journal of Business Venturing, 20, 847-868.
    22.Lu, Y., 2008, Default Forecasting in KMV, Oriel College, University of Oxford.
    Description: 碩士
    國立政治大學
    風險管理與保險研究所
    100358019
    101
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0100358019
    Data Type: thesis
    Appears in Collections:[風險管理與保險學系] 學位論文

    Files in This Item:

    File SizeFormat
    801901.pdf1050KbAdobe PDF2943View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback