Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/58341
|
Title: | 預測之效果與評估-台灣加權股價指數之應用 The forecasting effect and performance – Application of TAIEX |
Authors: | 紀登元 Ji, Deng Yuan |
Contributors: | 高安邦 Kao, An Pang 紀登元 Ji, Deng Yuan |
Keywords: | 預測績效 多元轉換函數 組合預測 台灣加權股價指數 forecasting performance transfer function combination forecasting method TAIEX |
Date: | 2012 |
Issue Date: | 2013-06-03 18:01:23 (UTC+8) |
Abstract: | 本文主要以時間序列為基礎,透過一般化自我相關條件異質變異模型、介入分析、誤差修正、多元轉換函數及組合預測等方法,來建立台灣加權股價指數的預測模型。 從預測精確度之結果顯示,多元轉換函數納入介入分析模型為單一預測模式的最佳預測模型,且其預測績效具有穩定性,而透過最小誤差迴歸組合預測模型可以再改善預測模型在MSPE、RMSPE、MAPE及Theil’s U等量的預測績效。 從多元轉換函數納入介入分析模型中發現,台灣加權股價指數會受到美國道瓊工業指數、台幣兌美元之匯率及消費者物價指數等經濟變數所影響。由於股票市場是重要景氣領先指標,因而當台灣或美國股票市場發生重大事件時,將會對台灣經濟發展產生衝擊,而從本文研究發現,政府可藉由短期政策的施行,產生另一股力量來平衡股市的波動,進而穩定台灣整體經濟發展。 This research introduces GARCH, ECM, transfer function, and combined forecasting model to predict the changes of TAIEX, and to evaluate the forecasting performance of different models. The results show that the intervention analysis integrated into transfer function yields an accurate prediction model, and the forecasting performance is stable. According to the weighted average of forecasts by minimizing regression error, the resulting forecasting performance such as MSPE, RMSPE, MAPE and Theil’s U will be improved. The intervention analysis integrated into transfer function model shows that the TAIEX is affected by external factors, INDU, exchange rate, and consumer price index. The stock market is one of the major leading indictor, when the Taiwan or U.S. stock market had been impacted, and then Taiwan’s economic development will also be fluctuated. This paper shows that short-term implementation of policies could result in another force to balance the fluctuations in the stock market, and to stabilize the economic development in Taiwan. |
Reference: | 一、國內文獻 王冠閔、黃柏農(2004),「台灣股、匯市與美國股市關聯性探討」,台灣經濟預測與政策,第34卷第2期,31-72。 王毓敏、廖四郎、徐守德(2000),「亞洲股市間的關係-動態過程的檢定」,亞太管理評論,第5卷,第1期,15-27。 汪志忠、鄭雅云(2012),「總統大選對股票市場之動態衝擊分析:美國與台灣之比較」,政治科學論叢,54期,121-151。 林茂文(2006),「時間數列分析與預測-管理與財經之應用」,華泰文化有限公司,台北。 林煜宗(1978),「市場因素對台灣證券市場股價變動之影響」,證交資料,第194期,1-9。 柏婉貞、黃柏農(2007),「台股指數期貨與現貨市場日內報酬波動與交易量非線性行為之研究」,經濟研究,43(2),143-158。 陳仕偉、陳續文(2010),「股價報酬與實質經濟活動的關聯性-跨國的實證研究」,台灣銀行季刊,第61卷第3期,262-306。 梁國源、邱萬益(1987),「兩種組合預測方法之比較:常態誤差法與Granger/Ramanathan 迴歸法B」,經濟論文,第15卷第2期,137-142。 黃柏農(1998),「臺灣的股價與總體變數之間的關係」,證券市場發展季刊,10(4),89-109。 黃柏農、鄭素姻、侯翰、王祝三(2009),「台灣股票市場之動態系統風險研究」,經濟研究,45(2),237-272。 彭素玲、周濟(2002),「台灣總體經濟即期季模型之建立與應用」,台灣經濟預測與政策,32(1),77-116。 楊奕農(2005),「時間序列分析-經濟與財務上之應用」,雙葉書廊有限公司,台北。 廖偉真、雷立芬(2010),「不同樣本頻率之股市波動性估計」,臺灣銀行季刊,61(4),294-307。 劉祥熹、涂登才(2013),「美國股市及其總體經濟變數間關連性與波動性之研究-VEC GJR DCC-GARCH-M 之模型應用」,經濟研究,48(1),139-189。 賴弘程、曾增展(2010),「次級房貸風暴對臺股指數與國際指數互動關係之影響」,台灣銀行季刊,61(4),26-46。
二、國外文獻 Ajayi, R.A., and Mougoue, M. (1996), “On the dynamic relation between stock prices and exchange rates,” Journal of Financial Research, 19, 193-207. Baharumshah, A.Z. (2004), “Stock prices and long-run demand for money: evidence from Malaysia,” International Economic Journal, 18(3), 389-407. Bates, J.M., and Granger, C.W.J. (1969), “The combination of forecasts,” Operations Research Quarterly, 20, 451-468. Bessler, D.A., and Brandt, J.A. (1981), “Forecasting livestock prices with individual and composite methods,” Applied Economics, 13, 513-522. Bollerslev, T. (1986),“Generalized autoregressive conditional hetero- skedasticity,” Journal of Econometrics, 31(3), 307-327. Box, G.E.P., and Jenkins, G.H. (1976), “Time series analysis: forecasting and control,” San Francisco: Holden Day. Box, G.E.P., and Tiao, G.C. (1975), “Intervention analysis with applications to economic and environmental problems,” Journal of the American Statistical Association, 70(349), 70-79. Chang, I., Tiao, G.C. and Chen, C. (1988), “Estimation of time series parameters in the presence of outliers,” Technometrics, 30, 193-204. Chen, H.Y., Lee, C.F., Tai, T., and Wang, K. (2011), “Fiscal and monetary policies in reaction to the financial tsunami by the Taiwanese government,” Review of Pacific Basin Financial Markets and Policies, 14(1), 153-169. Chiang, T.C., Jeon, B.N., and Li, H. (2007), “Dynamic correlation analysis of financial contagion: evidence from Asian markets,” Journal of International Money and Finance, 26(7), 1206-1228. Chowdhury, A.R. (1994), “Stock market interdependencies: evidence from the Asian NIES,” Journal of Macroeconomics, 16, 629-651. Cochrane, J.H. (1991), “A critique of the application of unit root tests,” Journal of Economic Dynamics and Control, 15, 275-284. David, E.R., Jack, K.S., and Guofu, Z. (2010), “Out-of-sample equity premium prediction: combination forecasts and links to the real economy,” Review of Financial Studies, 23(2), 821-862. David, G.M., and Mark, E.W. (2010), “Stock return predictability and dividend-price ratio: a nonlinear approach,” International Journal of Finance and Economics, 15, 351-365. Dickey, D.A., and Fuller, W.A. (1979), “Distribution of the estimators for autoregressive time Series with a unit root,” Journal of the American Statistical Association, 74, 427-431. Engle, R.F., and Granger, C.W.J. (1987), “Cointegration and error correction: representation, estimation and testing,” Econometrica, 55(2), 251-276. Eun, C.S., and Shim, S. (1989), “International transmission of stock market movements,” Journal of Financial and Quantitative Analysis, 24(2), 241-256. Fama, E.F. (1981), “Stock returns, real activity, inflation, and money,” American Economic Reviews, 71, 545-565. Fisher, I. (1930), “The purchasing power of money,” MacMillan, New York, N.Y. Forbes, K.J., and Rigobon, R. (2002), “No contagion, only interdependence: measuring stock market comovements,” Journal of Finance, 57, 2223-2261. Fox, A.J. (1972), “Outliers in time series,” Journal of the Royal Statistical Society, Series B, 34(3), 350-363. Franses, P.H. (2011), “Model selection for forecast combination,” Applied Economics, 43, 1721-1727. Fritz, R.G., and Brandon, C., and Wander, J. (1984), “Combining time series and econometric forecast of tourism activity,” Annals of Tourism Research, 171-176. Gabe, J. (2008), “Determinants of stock prices: new international evidence,” The Journal of Portfolio Management, 34(3), 81-92. Gabriel, R. (2004), “An empirical note about additive outliers and nonstationarity in Latin-American Inflation Series,” Empirical Economics, 29(2), 361-372. George, K., Vincent, L., and Simon, P. (2008), “Forecast combination and the bank of England’s suite of statistical forecasting models,” Economic Modeling, 25(4), 772-792. Gerhard, T., and Michael, W. (1992), “Outlier detection and adjustment: an empirical analysis for Austrian data,” Empirica, 19(1), 71-93. Ghosh, Asim, R.S., and Johnson, K.H. (1999), “Who moves the Asia-Pacific stock markets U.S. or japan? Empirical evidence based on the theory of cointegration,” The Financial Review, 34, 159-170. Granger, C.W.J., and Ramanathan, R. (1984), “Improved methods of forecasting,” Journal of Forecasting, 3, 197-204. Granger, C.W.J., and Newbold, P. (1974). “Spurious regressions in econometrics,” Journal of Econometrics, 2(2), 111-120. Gultekin, B.H. (1983), “Stock market returns and inflation: evidence from other countries,” Journal of Finance, 38, 49-65. Hamilton, J.D. (1994), Time series analysis, Princeton University Press, United Kingdom. Hansen, B.E. (2008), “Least squares forecast averaging,” Journal of Econometrics 146, 342-350. Hiller, S.C., Bell, W.R., and Tiao, G.C. (1983), “Modeling considerations in the seasonal adjustment of economic time series,” Applied Time Series Analysis of Economic Data, Washington, D.C. US Bureau of the census, 74-100. Johannes L. (1989), “The effect of additive outliers on the forecasts from ARIMA models,” International Journal of Forecasting, 5(2), 231-240. Johansen, S. (1988), “Statistical analysis of cointegration vectors,” Journal of Economic Dynamic and Control, 12, 231-254. Jund, C., and Boyd, R. (1996), “Forecasting UK stock prices,” Applied Financial Economics, 6, 279-286. Kanas, A. (2000), “Volatility spillovers between stock returns and exchange rate changes: international evidence,” Journal of Business Finance and Accounting, 27, 447-467. Kaylen, M.S., and Brandt, J.A. (1988), “A note on qualitative forecast evaluation: comment,” American Journal of Agricultural Economics, 70(2), 415-416. Kim, J.R. (2003), “The stock return-inflation puzzle and the asymmetric causality in stock returns, inflation and real activity,” Economics Letters, 80, 155-160. King, B.F. (1966), “Market and industry factors in stock price behavior,” Journal of Business, 39, 139-190. Lee, C.F. (2001), “Asian economic crisis and Asian economic outlook for the new millennium,” Review of Pacific Basin Financial Markets and Policies, 4(1), 9-28. Lewis, E.B. (1982), “Control of body segment differentiation in Drosophila by the bithorax gene complex,” Embryonic Development, Part A: Genetics Aspects, Edited by Burger, M.M. and R. Weber. Alan R. Liss, New York, 269-288. Liu, L.M., and Hanssens, D.M. (1982). “Identification of multiple-input transfer function models,” Communications in Statistics A, 11, 297-314. Liu, L.M. (2009), Time series analysis and forecasting, Scientific Computing Associates Corp. Ljung, G.M., and Box, G.E.P. (1978), “On a measure of lack of fit in time series models,” Biometrika, 65, 297-304. Ma, C.K., and Kao, G.W. (1990), “On exchange rate changes and stock price reactions,” Journal of Business Finance and Accounting, 17, 441-449. Makridakis, Spyros, G., and Robert, L.W. (1983), “Averages of forecasts: some empirical results,” Management Science, 29, 987-996. Masih, A.M.M., and Masih, R. (1997), “Dynamic linkages and the propagation mechanism driving major international stock markets: an analysis of pre-and post-crash eras,” The Quarterly Review of Economics and Finance, 37, 859-885. Mauro, P. (2003), “Stock returns and output growth in emerging and advanced economies,” Journal of Development Economics, 71, 129-153. Menezes, L., Bunn, D., and Taylor, J. (2000), “Review of guidelines for the use of combined forecasts,” European Journal of Operational Research, 120, 190-204. Monica, B., Roberto, C., Francesco, R., Dijk, V., and Herman, K. (2012), “Combination schemes for turning point predictions,” Quarterly Review of Economics and Finance, 52(4), 402-412. Moreno, B., and López, A.J. (2007), “Combining forecasts through information measures,” Applied Economics Letters, 14, 899-903. Mok, Henry, M.K. (1993), “Causality of interest rate, exchange rate and stock price at stock market open and close in Hong Kong,” Asia Pacific Journal of Management, 123-143. Nasseh, A., and Strauss, J. (2000), “Stock prices and domestic and international Macroeconomic activity: a cointegration approach,” Quarterly Review of Economics and Finance, 40(2), 229-245. Nelson, H.B. (2004), “cointegration analysis in the presence of outliers,” Econometrics Journal, 7(1), 249-271. Polasek, W., and Jin, S. (1997), “GARCH models with outliers,” Studies in Classification, Data Analysis, and Knowledge Organization. Heidelberg and New York: Springer. Rapach, D., and J.K. Strauss, (2008), “Structural breaks and GARCH models of exchange rate volatility,” Journal of Applied Econometrics, 23, 65-90. Sanjeev, S., Suncica, V., and Siem, J. K. (2003), “Intervention time series analysis of crime rates,” Working Paper. Schwert, G.W. (1990), “Stock returns and real activity: a century of evidence,” Journal of Finance, 45, 1237-1257. Sims, C.A. (1980), “Macroeconomics and reality,” Econometrica, 48, 1-48. Smith, K.L. (1990), “Major world equity market interdependence a decade after the october 1987 crash: evidence from cross-spectral analysis,” Journal of Business Finance and Accounting, 26, 365-392. Soenen, L., and Hennigar, E. (1988), “An analysis of exchange rates and stock prices-the US experience between 1980 and 1986,” Akron Business and Economic Review, 19, 7-16. Spiro, P.S. (1990), “The impact of interest rate changes on the stock price volatility,” The Journal of Portfolio Management, 63-68. Stock, J.H., and Watson, M.W. (2004), “Combination forecasts of output growth in a seven-country data set,” Journal of Forecasting, 23, 405-430. Stock, J.H., and Watson, M.W. (2010), “Estimating Turning Points Using Large Data Sets,” NBER Working Papers 16532, National Bureau of Economic Research, Inc. Tobin, J. (1969), “A general equilibrium approach to monetary theory,” Journal of Money, Credit and Banking, 1(1), 15-29. Toma, M., McGratha R., and Payneb, J.E. (2009), “Hotel tax receipts and the Midnight in the Garden of Good and Evil: a time series intervention seasonal ARIMA model with time-varying variance,” Applies Economics Letter, 16, 653-656. Tsay, R.S. (1988), “Outliers, level shifts, and variance changes in time series,” Journal of Forecasting, 7, 120. Umstead, D.A. (1977), “Forecasting stock market prices,” Journal of Finance, 32, 427-441. Wei, X., and Yang, Y. (2012), “Robust forecast combinations,” Journal of Econometrics, 166(2), 224-236. Yoo, K.R. (1998), “Intervention analysis of electoral tax cycle: the case of Japan,” Public Choice, 96(3), 241-258. Yule, G.U. (1921), “On the time-correlation problem with special reference to the variate difference correlation method,” Journal of the Royal Statistical Society, 84, 497-526. |
Description: | 博士 國立政治大學 經濟學系 96258502 101 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0096258502 |
Data Type: | thesis |
Appears in Collections: | [經濟學系] 學位論文
|
Files in This Item:
There are no files associated with this item.
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|