English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114205/145239 (79%)
Visitors : 52583633      Online Users : 1070
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/57637


    Title: Two Novel Feature Selection Approaches for Web Page Classification,
    Authors: Chen, Chih-Ming;Lee, Hahn-Ming;Chang, Yu-Jung
    陳志銘
    Contributors: 政大圖檔所
    Keywords: Discriminating power measure;Feature selection;Fuzzy decision making;Web page classification
    Date: 2009-01
    Issue Date: 2013-04-18
    Abstract: To help the growing qualitative and quantitative demands for information from the WWW, efficient automatic Web page classifiers are urgently needed. However, a classifier applied to the WWW faces a huge-scale dimensionality problem since it must handle millions of Web pages, tens of thousands of features, and hundreds of categories. When it comes to practical implementation, reducing the dimensionality is a critically important challenge. In this paper, we propose a fuzzy ranking analysis paradigm together with a novel relevance measure, discriminating power measure (DPM), to effectively reduce the input dimensionality from tens of thousands to a few hundred with zero rejection rate and small decrease in accuracy. The two-level promotion method based on fuzzy ranking analysis is proposed to improve the behavior of each relevance measure and combine those measures to produce a better evaluation of features. Additionally, the DPM measure has low computation cost and emphasizes on both positive and negative discriminating features. Also, it emphasizes classification in parallel order, rather than classification in serial order. In our experimental results, the fuzzy ranking analysis is useful for validating the uncertain behavior of each relevance measure. Moreover, the DPM reduces input dimensionality from 10,427 to 200 with zero rejection rate and with less than 5% decline (from 84.5% to 80.4%) in the test accuracy. Furthermore, to consider the impacts on classification accuracy for the proposed DPM, the experimental results of China Time and Reuter-21578 datasets have demonstrated that the DPM provides major benefit to promote document classification accuracy rate. The results also show that the DPM indeed can reduce both redundancy and noise features to set up a better classifier.
    Relation: Expert Systems with Applications, 36(1), 260-272
    Data Type: article
    DOI 連結: http://dx.doi.org/10.1016/j.eswa.2007.09.008
    DOI: 10.1016/j.eswa.2007.09.008
    Appears in Collections:[圖書資訊與檔案學研究所] 期刊論文

    Files in This Item:

    File Description SizeFormat
    260-272.pdf296KbAdobe PDF2857View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback