政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/57579
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 113873/144892 (79%)
造訪人次 : 51944836      線上人數 : 550
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    政大機構典藏 > 資訊學院 > 資訊科學系 > 學位論文 >  Item 140.119/57579
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/57579


    題名: 以代理人基方法之基礎設施互依性模擬
    Infrastructure Interdependency Simulation Using Agent-Based Modeling
    作者: 劉治宏
    Liu, Chih Hung
    貢獻者: 李蔡彥
    Li, Tsai Yen
    劉治宏
    Liu, Chih Hung
    關鍵詞: 代理人基模擬
    電力網路
    互依性分析
    Agent-Based Modeling
    Power grid
    Interdependency
    日期: 2012
    上傳時間: 2013-04-01 14:39:04 (UTC+8)
    摘要: 基礎設施是民生不可或缺的元素之一。重要基礎設施通常由許多節點構成,也因為彼此之間相依性極高,所以也被視為一種典型的複雜系統。近年來以資訊科技輔助分析這類重點基礎設施的研究也越來越多,從文獻上來看主要可以分為兩大類:(1)互依性分析(2)系統分析。前者著重於使用像拓樸分析這類數值分析的方式,找出弱點基礎設施;而後者則是使用大量模擬的方式來找尋潛在的弱點基礎設施,並模擬不同情境的危機情境。常見的基礎設施分析,多以拓樸分析為基礎找出弱的節點,並套用蒙地卡羅演算法到模型內,做為模擬的依據,但較少見到以基礎設施的各項屬性和規則當作模型的模擬。因此,本篇論文的貢獻是希望以台灣電力公司之電力基礎設施運轉規章、基礎設施的屬性等這些資料為例,當作建立模型的基礎,將Push-Relabel演算法的步驟分散至各代理人上,作為電力調度平衡的計算方式,並採用Repast Simphony作為我們代理人基模擬的工具。藉由操作這些節點的狀態,我們設計了七個不同情境的模擬,並以IEEE指標做為結果的評估方式,藉以說明我們可以透過代理人基模擬找出基礎設施中的弱點,並能夠建立不同的情境模擬各式的危機和災難,進而提供預防的機會。此外,我們的模擬工具亦提供不同的視覺化呈現結果,讓使用者能夠簡單的看出模擬過程的變化,並能夠將結果儲存並重現。
    Infrastructure is important to our lives. Most infrastructure facilities consist of nodes and edges of high dependency. These kinds of facilities are considered as traditional complex systems. The research of using computer technologies to analyze such systems has grown recently. We can classify recent research into two categories: 1. Dependency analysis, and 2. System dynamic analysis. The former focuses on computation methods such as topology analysis to find vulnerable nodes while the latter focuses on large-scale simulation to find potential vulnerable infrastructure facilities. Common dependency analysis uses topology analysis to find vulnerable nodes and apply the Monte-Carlo method to their model. However, it merely applies an infrastructure’s parameters and rules to their model. In this thesis, our contributions are on applying such parameters and rules to our model by taking Taiwan Power Company as an example. On this basis, we use agent-based modeling to simulate the context. We used the Push-Relabel algorithm to dispatch the power flow. And we used Repast Simphony as a tool of agent-based modeling. We established different situations to simulate different disasters such as earthquake or tsunami, and to provide a chance estimate and reduce the damages of such a disaster in advance. Besides, we also used indices of an IEEE standard to evaluate our result. In other words, we can find the vulnerable nodes or potential threat in a power grid with agent-based simulation. Besides, we provided various user interfaces for users to observe the information of the power grid more easily and efficiently. Our user interfaces can dynamically present the change of information on the power grid, and the result can be saved and loaded for future uses.
    參考文獻: http://www.taipower.com.tw/left_bar/power_life/power_flow.htm.
    [2] S.M. Rinaldi, J.P. Peerenboom, T.K. Kelly, Identifying, Understanding, and Analyzing Critical Infrastructure Interdependencies, IEEE control systems magazine., 21 (2001) 11-25.
    [3] C.M. Macal, M.J. North, Agent-based Modeling and Simulation, Winter Simulation Conference, (2009).
    [4] L. Hagen, A.B. Kahng, New Spectral Methods for Ratio Cut Partitioning and Clustering IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, (1992).
    [5] L. CIUPALA, The Cost Scaling Algorithm for Bipartite Network, Bulletin of the Transilvania University of Brasov, 2 (2009) 8.
    [6] P. Crucitti, V. Latora, M. Marchiori, Model for Cascading Failures in Complex Networks, Physical Review E, 69 (2004).
    [7] P. Crucitti, V. Latora, M. Marchiori, A Topological Analysis of the Italian Electric Power Grid, Physica A, 338 (2004) 92-97.
    [8] P. Crucitti, V. Latora, M. Marchiori, Locating Critical Lines in High-Voltage Electrical Power Grids, Fluctuation and Noise Letters, 5 (2005).
    [9] F. Cadini, E. Zio, C.-A. Petrescu, Using Centrality Measures to Rank the Importance of the Components of a Complex Network Infrastructure, in: R. Setola, S. Geretshuber (Eds.) Critical Information Infrastructure Security, (Springer Berlin / Heidelberg, 2009), 155-167.
    [10] I. Eusgeld, W. Kröger, G. Sansavini, M. Schläpfer, E. Zio, The Role of Network Theory and Object-Oriented Modeling within a Framework for the Vulnerability Analysis of Critical Infrastructures, Reliability Engineering & System Safety, 94 (2009) 954-963.
    [11] E. Zio, C.-A. Petrescu, G. Sansavini, Vulnerability Analysis of a Power Transmission System, (2008).
    [12] E. Zio, R. Piccinelli, Randomized Flow Model and Centrality Measure for Electrical Power Transmission Network Analysis, Reliability Engineering & System Safety, 95 (2010) 379-385.
    [13] C.M.R. Sanseverino, E. Zio, Solving Advanced Network Reliability Problems by Means of Cellular Automata and Monte Carlo Sampling, Reliability Engineering & System Safety, 89 (2005) 219-226.
    [14] E. Zio, L. Podofillini, V. Zille, A Combination of Monte Carlo Simulation and Cellular Automata for Computing the Availability of Complex Network Systems, Reliability Engineering & System Safety, 91 (2006) 181-190.
    [15] M. Marseguerra, E. Zio, Monte Carlo Simulation for Model-Based Fault Diagnosis in Dynamic Systems, Reliability Engineering & System Safety, 94 (2009) 180-186.
    [16] S.A. Harp, S. Brignone, B.F. Wollenberg, T. Samad, SEPIA. A Simulator for Electric Power Industry Agents, Control Systems, IEEE, 20 (2000) 53-69.
    [17] P. Pederson, D. Dudenhoeffer, S. Hartley, M. Permann, Critical Infrastructure Interdependency Modeling A Survey of U.S and international research, (2006).
    [18] L. Tolbert, H. Qi, F. Peng, Scalable Multi-Agent System for RealTime Electric Power Management, in: Proc. Power Engineering Society Summer Meeting, (2001), 1676-1679.
    [19] M. Anim, Toward Self-Healing Energy Infrastructure Systems, Computer Applications in Power, IEEE, 14 (2001) 20-28.
    [20] S. Panzieri, R. Setola, G. Ulivi, An Agent Based Simulator for Critical Interdependent Infrastructures, (2004).
    [21] M. Schüle, R. Herrler, F. Klügl, Coupling GIS and Multi-Agent Simulation – Towards Infrastructure for Realistic Simulation, in: G. Lindemann, J. Denzinger, I. Timm, R. Unland (Eds.) Multiagent System Technologies, (Springer Berlin / Heidelberg, 2004), 228-242.
    [22] E. Casalicchio, E. Galli, S. Tucci, Federated Agent-Based Modeling and Simulation Approach to Study Interdependencies in IT Critical Infrastructures, in: Proceedings of the 11th IEEE International Symposium on Distributed Simulation and Real-Time Applications, (IEEE Computer Society, 2007), 182-189.
    [23] E. Casalicchio, E. Galli, S. Tucci, Modeling and Simulation of Complex Interdependent Systems: A Federated Agent-Based Approach, in: Critical Information Infrastructure Security, (Springer-Verlag, 2009), 72-83.
    [24] R.C. Mihailescu, M. Vasirani, S. Ossowski, Towards Agent-Based Virtual Power Stations via Multi-Level Coalition Formation, in: First International Workshop on Agent Technologies for Energy Systems, (2010).
    [25] A. Saleem, M. Lind, M.M. Veloso, Multiagent-Based Protection and Control in Decentralized Electric Power Systems, in: First International Workshop on Agent Technologies for Energy Systems, (2010).
    [26] W. Lam, A.M. Segre, A Distributed Learning Algorithm for Bayesian Inference Networks IEEE Transactions on Knowledge and Data Engineering, (2002) 13.
    [27] M. Hoefer, Strategic Cooperation in Cost Sharing Games, 6th International Workshop, WINE, (2010) 17.
    [28] SWARM, http://www.swarm.org.
    [29] MASON, http://cs.gmu.edu/~eclab/projects/mason/.
    [30] Repast Simphony, http://repast.sourceforge.net/.
    [31] A.V. Goldberg, R.E. Tarjan, A New Approach to the Maximum Flow Problem, Proceeding STOC `86 Proceedings of the eighteenth annual ACM symposium on Theory of computing (1986) 11.
    [32] J.D. Glover, M.S. Sarma, T.J. Overbye, Power System Analysis and Design, Fifth Edition, (2011).
    [33] I.P.E. Society, IEEE Guide for Electric Power Distribution Reliability Indices, (2012).
    [34] 台灣電力公司, 超高壓系統之來臨-南北第一路~第三路345kV幹線暨超高壓變電所 http://taipower.pcc.gov.tw/files/15-1002-234,c88-1.php.
    [35] Gordoncheng`s Blog,電力系統負載曲線, http://gordoncheng.wordpress.com/2010/09/06/%E9%9B%BB%E5%8A%9B%E7%B3%BB%E7%B5%B1%E8%B2%A0%E8%BC%89%E6%9B%B2%E7%B7%9Aload-curve/
    [36] Y.H. Liu, Computational Large-Scale Complex Networks : Competition Network and Power Grid, in: Graduate Institute of Applied Physics, (National Chengchi University, 2012), 73.
    描述: 碩士
    國立政治大學
    資訊科學學系
    98753003
    101
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0098753003
    資料類型: thesis
    顯示於類別:[資訊科學系] 學位論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    index.html0KbHTML2397檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋