English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114205/145239 (79%)
Visitors : 52609935      Online Users : 699
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/56891


    Title: 基於EEMD與類神經網路建構台指期貨交易策略
    A study of Trading Strategies of TAIEX Futures by using EEMD-based Neural Network Learning Paradigms
    Authors: 陳原孝
    Chen,Yuan Hsiao
    Contributors: 蕭又新
    陳原孝
    Chen,Yuan Hsiao
    Keywords: 總體經驗模態
    類神經網路
    自回歸移動平均模型
    交易策略
    預測模型
    Ensemble Empirical Mode Decomposition
    Artificial Neural Network
    ARMA
    Trading strategy
    Forecasting model
    Date: 2012
    Issue Date: 2013-02-01 16:55:52 (UTC+8)
    Abstract: 金融市場瞬息萬變,股價漲跌似乎沒有顯著的規則,這意味著股價的行為特徵是不可精確預知和不確定的,為了在市場上增加收益和減少投資風險,研究人員不得不試圖建立一個有效預測金融市場的模型,它可以估算這種不確定性的影響,很可惜的,至今仍然沒有一個模型接近成功的。沒有成功的模型並不代表它是不存在的,相反的,研究人員需要建立更多的預測模型,以提供市場判斷的經驗法則。
    我們使用ARMA與兩種不同形式的EEMD-ANN去對台灣加權指數期貨做預測值的精確度比較,我們比較了兩種不同的行情:趨勢與震盪。此外,預測出未來市場之價格後,我們使用2種交易策略去做績效測試,本研究希望能夠找到較適合使用在指數預測的預測模型。
    另外在本文中,我們也分析影響TAIEX價格波動的因素,透過EEMD,我們可以將其拆解成數具有不同物理意義的本徵模態函數(IMF),再藉由統計值選出較重要的IMF並分析其意義。
    Financial market changes constantly and Stock Price Volatility (SPV) seems to be no significant rules. This means behavioral characteristic of the stock price cannot foresee and uncertain accurately. In order to increase revenue and reduce investment risk in the market, researchers had to try to establish an effective prediction model of financial markets. It can estimate the impact of this uncertainty. It`s a great pity that there is not a model that is close successfully yet. That does not represent it does not exist successful model. Instead, researchers need to establish more predictive models to offer the market to judge the rule of thumb.
    The forecasting results of TAIEX Index futures by ARMA Model and two types of EEMD-ANN Models were compared in two kinds of markets – trend and fluctuation. In addition, two trading strategies were tested after the future prices are forecasted. The study attempted to identify a suitable forecasting model.
    Moreover, the factors for price fluctuation of TAIEX were also analyzed in the study. Through EEMD, they could be decomposed to IMFs with various physical meanings and more important IMFs were selected to be analyzed in accordance with the statistic value.
    Reference: Abu-Mostafa Y. S. and Atiya A. F., 1996. Introduction to Financial Forecasting, Applied Intelligence, 6: 205-213.

    Yoon Youngohc., Swales, George, 1991. Predicting Stock Price Performance: A Neural Network Approach, Proceedings of the Twenty-Fourth Annual Hawaii International Conference on System.

    Kamijo, K. and Tanigawa, T., 1993. Stock price pattern recognition: a recurrent neural network approach, in Trippi, R. and Truban, E. (eds), Neural Networks in Finance and Investing.

    Kuan, C. M. White, H., 1994. Artificial neural networks: An econometric perspective, Econometric Reviews, 13, 1-91.

    Wood, Douglas and Bhaskar.Dasqupta, 1994. Modelling and Index of the French Capital Market, Economic and Financial Computing, Autumn/Winter, pp.119-136

    En Tzu Li, 2011. TAIEX Option Trading by using EEMD-based Neural Network Learning Paradigm. Master Thesis of Graduate Institute of Applied Physics, College of Science NCCU.

    Zheng-Hsiu Chu, 2004. On Study of The Relationship between Taiwan Stock Market and The International Stock Markets. Master Thesis of Department of Statistics, College of management NCKU.

    D. E. Rumelhart and J. L. McClelland, 1986. Parallel Distributed Processing:Explorations in the Microstructure of Cognition, Vol. 1, MA: MITPress.

    H. A. Rowley, S. Baluja, and T. Kanade, 1998. Neural network-based face detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(1), January 1998.

    Kaastra, I., Boyd, M., 1996. Designing a neural network for forecasting fi nancial and economic time series. Neurocomputing, 10, 215-236.

    M. T. Hagan, H. B. Demuth, Neural Network Design, Thomson Learning, 1996.
    Stent, G. S., 1973. A Physiological Mechanism for Hebb’s Postulate of Learning. PNAS 70 (4), 997–1001.

    Hush, D. and Horne, B.1993. Progress in supervised neural networks. IEEE Signal Processing Magazine, 10(1):8-39.

    Gately, E., 1996.Neural Networks for Financial Forecasting. John Wiley, New York

    Martin F. and Aguado J.A., 2003.Wavelet-based ANN approach for transmission line protection, IEEE Trans. Power Delivery, vol.18, no.4, pp.1572-1574.

    Nayak, P.C., Sudheer, K.P., Rangan, D.M. and Ramasastri, K.S., 2004. Aneuro-fuzzy computing technique for modeling hydrological time series, Journal of Hydrology, 291(1-2): 52-66.

    Joseph E. Granville, 1960. A Strategy of Daily Stock Market Timing for Maximum Profit. Englewood Cliffs, N. J.: Prentice-Hall, p.155.

    Kitchin, Joseph., 1923. Cycles and Trends in Economic Factors, Review of Economics and Statistics, The MIT Press, 5 (1), pp. 10-16.

    Harry S. Dent Jr., 2008. The Great Depression Ahead: How to Prosper in the Crash
    Following the Greatest Boom in History (New York: Free Press, 2008), at17-39.

    Siegel, J.J., "Stocks for the Long Run", 4nd ed., New York: McGraw-Hill, 1998.

    Chang-Hsu Liu, 2010. Calendar Anomalies: A Comparative Study of International Equity Markets.

    Jasemi, M., Kimiagari, A. M. and Memariani, A., 2011. A modern neural network model to do stock market timing on the basis of the ancient investment technique of Japanese Candlestick. Expert Systems with Applications 38, 3884–3890.
    Description: 碩士
    國立政治大學
    應用物理研究所
    99755005
    101
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0997550051
    Data Type: thesis
    Appears in Collections:[應用物理研究所 ] 學位論文

    Files in This Item:

    File SizeFormat
    005101.pdf2846KbAdobe PDF2390View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback