English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114205/145239 (79%)
Visitors : 52520110      Online Users : 962
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/56332


    Title: 親子分離對新生老鼠之腎上腺發育的影響
    The effects of maternal separation on the development of adrenal glands
    Authors: 周斈澧
    Contributors: 賴桂珍
    周斈澧
    Keywords: 嗜鉻細胞
    親子分離
    腎上腺素
    正腎上腺素
    Date: 2011
    Issue Date: 2012-12-03 11:27:39 (UTC+8)
    Abstract: 腎上腺素為哺乳類為了因應各種不同的壓力所釋放出的物質,影響生物體日常的生理功能且對生物體的存活有著莫大的貢獻,在成體中的調節已經在很多文獻中被探討,但對於處在發育階段的新生兒其腎上腺的發育與早期壓力對此系統的影響仍不盡清楚。為探討壓力與腎上腺發育及壓力調控之間的關係,本論文將觀察之重點放在腎上腺髓質中能夠製造腎上腺素的嗜鉻細胞(chromaffin cells)上。要了解新生兒腎上腺發育與壓力之間的關係,主要是利用親子分離的實驗,對新生老鼠造成壓力,實驗將新生老鼠分成三組,分別為控制組(control)、隔離組(isolate;P2~P14一小時/天)與撫摸組(handle;P2~P14 十分鐘/天),試驗完畢後分別在老鼠出生後十四天(P14)與出生後二十一天(P21)進行腎上腺切片,利用腎上腺素合成酵素(PNMT ,phenylethanolamine-N-methyl transferase)及腎上腺素與正腎上腺素共同合成酵素(TH,tyrosine hydroxylase)之螢光免疫染色,來區分可製造腎上腺素的chromaffin cells,發現不管在P14或是P21,三組之間的腎上腺髓質結構並無太大差異。結果顯示,經過親子分離實驗的操弄,發現在撫摸組chromaffin cells中其PNMT的含量相對於TH的比例含量高於控制組與隔離組,顯示在撫摸組中每一chromaffin cell含有較多的PNMT,可能可以製造較多的腎上腺素。最後,為探討親子分離實驗對新生老鼠之腎上腺素與正腎上腺素含量的影響,以HPLC檢測經過親子分離實驗的新生老鼠之腎上腺,發現在P14時撫摸組與隔離組之腎上腺素含量比控制組高(p<0.05),而正腎上腺素的含量則沒有差異;在P21時三組間的腎上腺素與正腎上腺素含量則沒有差異。而同樣的親子分離實驗在一胎一組新生老鼠的腎上腺發育上未看到任何顯著影響。
    Reference: Alison J. WINDER (1991)New assays for the tyrosine hydroxylase and dopa oxidase activities of tyrosinase. Eur J. Biochcm. f98, 317-326
    Andrej Tillinger (2010)Vesicular Monoamine Transporters (VMATs) in Adrenal Chromaffin Cells: Stress-Triggered Induction of VMAT2
    and Expression in Epinephrine Synthesizing Cells .Cell Mol Neurobiol30:1459–1465
    Baker PF ,Knight DE.(1978) Calcium-dependent exocytosis in bovine
    adrenal medullary cells with leaky plasma membranes. Nature
    276: 620–622.
    Banks, P.(1965) Effects of stimulation by carbachol on the metabolism of the bovine adrenal medulla. Biochem. J.97: 555.
    Baruchin A, Vollmer RR, Miner LL, Sell SL, Stricker EM,Kaplan BB.(1993) Cold-induced increases in phenylethanolamine Nmethyltransferase
    (PNMT) mRNA are mediated by non-cholinergic mechanisms in the rat adrenal gland. Neurochem Res 18: 759–766.
    Beatriz Galán-Rodríguez(2004)Extra-adrenal chromaffin cells of the Zuckerkandl´s paraganglion: morphological and electrophysiological study. Cell Biology of the Chromaffin Cell
    Benedict J. Kolber (2008) HPA axis dysregulation and behavioral analysis of mouse mutants with altered GR or MR function. NIH Public Access 11(5): 321–338
    Blaschko (I942)The activity OF I(-)-dopa decarboxylase J. Physiol. IOI, 337-
    Blazicek P, Kvetnansky R(1989) Kinetic parameters of rat adrenal TH
    and PNMT under acute and repeated stress. In: Stress: Neurochemical
    and Humoral Mechanisms, edited by Van Loon GR, Kvetnansky
    R, McCarty R, Axelrod J. New York: Gordon and Breach, p. 787–797
    Benedict J. Kolber (2008) HPA axis dysregulation and behavioral analysis of mouse mutants with altered GR or MR function. NIH Public Access 11(5): 321–338
    Cannon. (1926) Physiological regulation of normal states: some tentative postulates concerning biological homeostatics. p. 91. Paris: Éditions Médicales.
    Chuang DM, Costa E.(1974) Biosynthesis of tyrosine hydroxylase in rat
    adrenal medulla after exposure to cold. Proc Natl Acad Sci USA 71:
    4570–4574.
    Connett, R. J. ,Kirshner, N.(1970) Purification and properties of bovine phenylethanolamine N-methyltransferase.
    J. Biol. Chem. 245: 329, 1970.
    Coulter CL.(2004) Functional biology of the primate fetal adrenal gland: advances in technology provide new insight. Clinical and Experimental Pharmacology & Physiology.31: 475–484.
    Coupland, R. E.(1965) Electron microscopic observations on the structure of the rat adrenal medulla. II. Normal innervation. J. Anat. 99: 255.
    Cynthia G Zoski (2007) Handbook of electrochemistry P722
    Douglas WW , Rubin RP(1961) The role of calcium in the secretory
    response of the adrenal medulla to acetylcholine. J Physiol 159:
    40–57.
    Edith (1949) Formation of adrenaline from noradrenaline in
    the perfused suprarenal gland. Brit. J. Pharmacol.,4, 245.
    Ehrhart-Bornstein (1998) Intraadrenal Interactions in the Regulation of
    Adrenocortical Steroidogenesis. Endocrine Reviews 19(2): 101–143
    Erankii 0, Harkonen M (1963) Histochemical demonstration of fluorogenic amines in the cytoplasm of sympathetic ganglion cells of the rat. Acta Physiol Stand 58:285-286.
    Fangwen Rao (2007) Tyrosine Hydroxylase, the Rate-Limiting Enzyme in Catecholamine Biosynthesis Circulation.116: 993-1006
    Giuseppe Biagini (1998) Postnatal maternal separation during the stress hyporesponsive period enhances the adrenocortical response to novelty in adult rats by affecting feedback regulation in the CA1 hippocampal field. Neuroscience Volume 16, Issues 3–4 Pages 187–197
    H. Winkler (1993) The adrenal chromaffin granule: a model for large dense core vesicles of endocrine and nervous tissue. J. Anat. 183, pp. 237-252
    Ikeda, M., Fahien, L. A(1966) A kinetic study of bovine adrenal tyrosine hydroxylase. J. Biol.Chem. 241: 4452.
    John F. Cryan(2001) Use of Dopamine-b-hydroxylase-Deficient Mice to Determine the Role of Norepinephrine in the Mechanism of Action of
    Antidepressant Drugs. vol. 298 no. 2 651-657
    Kirshner, N.(1957) Pathway of noradrenaline formation from dopa. J. Biol. Chem. 226: 821.
    Klaus Unsicker(2005) Chromaffin Cell and its Development. Neurochemical Research, Vol. 30, 921–925
    Kohn, A.(1902)Des chromaffine Gewebe. Ergeb. Anat. Entw. Gesch. 12: 253.
    Kubovcakova L, Tybitanclova K, Sabban EL, Majzoub J, Zorad
    S, Vietor I, Wagner EF, Krizanova O, Kvetnansky R (2004)
    Catecholamine synthesizing enzymes and their modulation by immobilization stress in knockout mice. Ann NY Acad Sci 1018:
    458–465.
    Kumer S. C. ,Vrana K. E. (1996) The intricate regulation of tyrosine
    hydroxylase activity and gene expression. J. Neurochem. 67, 443–
    462.
    Kvetnansky R, Mikulaj L.(1970) Adrenal and urinary catecholamines in
    rats during adaptation to repeated immobilization stress. Endocrinology 87: 738–743.
    Kvetnansky R, Weise VK, Gewirtz GP, Kopin IJ.(1971) Synthesis of
    adrenal catecholamines in rats during and after immobilization
    stress. Endocrinology 89: 46–49.
    Kvetnansky (2009) Catecholaminergic Systems in Stress: Structural and Molecular Physiol. Genetic Approaches.Rev 89: 535–606
    Levin, E. Y., LEvENBERG, B. AND KAUFMAN, S.(1960): The enzymatic conversion of 3, 4-dihydroxyphenylethylamine to norepinephrine. J. Biol. Chem. 235: 2080.
    Mary K. Dahmer (1996) Dopaminergic Inhibition of Catecholamine Secretion from Chromaffin Cells: Evidence that Inhibition Is Mediated by D4 and D5 Dopamine Receptors Journal of Neurochemistry Volume 66, Issue 1, pages 222–232
    Matthews (1969) The ultrastructure and somatic efferent synapses of small granule-containing cells in the superior cervical ganglion. J. Anat, 105, 2, pp. 255-282
    Mcewen,B.s.,stellar,e.(1993).Stress and the individual: mechanisms leading to disease.arch int Med,153:2093-2011
    Mcewwn,b.s.(1998). Protective and damaging effects of stress mediators. New eng J med,338:171-179
    Meaney,M.J.,Sapolsky,R.M.,Mcewen,b.s.(1985).The development of the glucocorticoid receptor system in the rat limbic brain.i.ontogeny and autoregulation.dev brain res,18:159-164
    Mesiano S , Jaffe RB.(1997) Developmental and functional biology of the primate fetal adrenal cortex.Endocrine Reviews 18: 378–403.
    P. E. MacDonald (2003)Voltage-dependent K+channels in pancreatic beta cells: Role, regulation and potential as therapeutic targets.Diabetologia46:1046–1062
    Peter Burkhard (2001) Structural insight into Parkinson`s disease treatment from drug-inhibited DOPA decarboxylase Nature Structural Biology 8, 963 - 967
    Petra Kempna (2008) Adrenal gland development and defects.Best Practice & Research Clinical Endocrinology & Metabolism Vol. 22, No. 1, pp. 77–93.
    Peter R. Dunkley, Larisa Bobrovskaya, Mark E. Graham(2004) Tyrosine hydroxylase phosphorylation: regulation and consequences. Journal of Neurochemistry, 91, 1025–1043
    Pohorecky, L. A. ,Rust, J. H.(1968) Studies on the cortical control of the adrenal medulla in the rat. J. Pharmaol.Exp. Ther. 162: 227.
    Richard Kvetnansky, Esther L. Sabban, Miklos Palkovits (2009)
    Catecholaminergic Systems in Stress: Structural and Molecular
    Genetic Approaches. Physiol Rev 89: 535–606.
    Ruth M.K. Keil (2004) Coping and stress: a conceptual analysis. Journal of Advanced Nursing 45(6), 659–665
    Sabban EL, Kvetnansky R. (2001) Stress-triggered activation of gene
    expression in catecholaminergic systems: dynamics of transcriptional
    events. Trends Neurosci 24: 91–98.
    Sapolsky,R.M.,Meaney,MJj.(1986).maturation of the adrenocortical stress response:neuroendocrine control mechanisms and the stress hyporesponsive period. Brain res rev,396:64-76
    Selye (1955) Stress and disease. science 122:625-631
    Selye (1975). Confusion and controversy in the stress field. Journal of Human Stress 1: 37–44.
    Szabo,s (1980) Stress and gastroduodenal ulcers. Stress 1: 25-36
    Vincent, S.(1910) The chromaphil tissues and the adrenal medulla. Proc. Roy. Soc. Ser. B Biol. Sci. 82: 502, 1910.
    Walter Bradford Cannon (1929). Bodily changes in pain, hunger, fear, and rage. New York: Appleton-Century-Crofts.
    Wurtman, R. J., Axelrod, J. (1965)Adrenaline synthesis: Control by the pituitary gland and adrenal glucocorticoids.Science 150:237–252.
    Yuan Ji(2008) Human phenylethanolamine N-methyltransferase genetic polymorphisms and exercise-induced epinephrine release .Physiol Genomics 33: 323–332
    Zigmond R. E., Schwarzschild M. A. , Rittenhouse A. R. (1989) Acute
    regulation of tyrosine hydroxylase by nerve activity and by neurotransmitters via phosphorylation. Ann. Rev. Neurosci. 12, 415–461.
    Description: 碩士
    國立政治大學
    神經科學研究所
    97754003
    100
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0977540031
    Data Type: thesis
    Appears in Collections:[神經科學研究所] 學位論文

    Files in This Item:

    File SizeFormat
    003101.pdf1452KbAdobe PDF21505View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback