政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/55500
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113822/144841 (79%)
Visitors : 51873546      Online Users : 495
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/55500


    Title: 標籤社群網絡之影響力最佳化
    Other Titles: Influence Maximization for Labeled Social Network
    Authors: 沈錳坤
    Contributors: 國立政治大學資訊科學系
    行政院國家科學委員會
    Keywords: 標籤社群網絡
    Date: 2011
    Issue Date: 2012-11-12 11:05:50 (UTC+8)
    Abstract: 網路病毒式行銷(Viral Marketing)透過網路社群中的人際關係,以及消費者彼此的相互影響與推薦,來達成提昇產品之廣告效益。廣告商必須在有限資源下從人群中找出具有影響力的人,讓產品或概念透過這些有影響力的人,以及人際關係之影響力散播的方式,推薦給更多的消費者,以達廣告效益最大化之目的。利用社群網路(Social Network),我們可將消費者之間的關係表示為圖形上的節點跟連結,進而將病毒式行銷轉為一種影響力最大化(Influence Maximization)的問題,即在社群網路中挑選最具有影響力的k 個消費者作為種子節點(Seed Nodes),使得產品之行銷能藉由此k 個種子消費者推廣出去,影響到其他更多的消費者。廣告行銷相當重視目標消費群,廣告目的是希望針對不同的商品能夠影響不同的目標消費群,使目標消費群購買該產品。然而,過去的影響力最大化問題僅考慮被影響的人數多寡,無法滿足這種針對目標消費群的需求,因此,我們提出以一種標籤社會網絡(Labeled Social Network)的方式來描述網路行銷中的各種目標消費群,並進而提出標籤影響力最大化問題(Labeled Influence Maximization Problem)。我們以特定標籤做為目標消費群,期望挑選k 個消費者作為種子節點,使得以此k 個種子節點之影響力擴散最終能在標籤社會網絡中影響到最多符合特定標籤(目標族群)之節點。針對標籤社會網絡之標籤影響力最大化問題,我們預計從兩方面來探討並解決之。其一為修改延伸既有影響力最大化之種子節點挑選近似演算法:Greedy、NewGreedy、CELFGreedy 和DegreeDiscount,使其能考慮標籤,找出影響最多符合目標標籤之節點的趨近解。其二,考慮到進一步增進演算法的效果與效率,我們預計將設計兩個進階演算法ProximityDiscount 和MaximumCoverage 來解決標籤影響力最大化問題,其主要概念在於分成Offline 與Online 之計算,在Offline 階段,我們可事先完成一些前處理,讓行銷人員可於Online 擬定目標行銷策略時,可直接利用計算結果快速找出種子節點。我們預計將設計實驗於Internet Movie Database(IMDB)之社群網路資料,對所設計的幾種標籤影響力最大化種子挑選演算法進行效果(影響具目標標籤之節點的數目)與時間效率的比較。
    Influence maximization problem is to find a small subset of nodes (seed nodes) in a social network that could maximize the spread of influence. But when marketers advertise for some products, they have a set of target audience. However, influence maximization doesn’t take target audience into account. This project addresses a new problem called labeled influence maximization problem, which is to find a subset of nodes in a labeled social network that could influence target audience and maximizes the profit of influence. In labeled social network, every node has a label, and every label has profit which can be set by marketers. We plan to investigate algorithms, Greedy, NewGreedy, CELFGreedy, and DegreeDiscount, modified from previous studies on original influence maximization to solve labeled influence maximization problem. Moreover, we plan to investigate new algorithms which offline compute the proximities of any two nodes in the labeled social network. When marketers make strategies online, the system will return the approximate solution by using proximities. Experiments will be performed on the labeled social network constructed from Internet Movie Database to measure the efficiency and effectiveness of these algorithms.
    Relation: 應用研究
    學術補助
    研究期間:10008~ 10107
    研究經費:366仟元
    Data Type: report
    Appears in Collections:[Department of Computer Science ] NSC Projects

    Files in This Item:

    File Description SizeFormat
    100-2221-E-004-012.pdf4524KbAdobe PDF2418View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback