English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114205/145239 (79%)
Visitors : 52556226      Online Users : 622
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 資訊學院 > 資訊科學系 > 學位論文 >  Item 140.119/54939
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/54939


    Title: 基於QoS限制於SC-FDMA上行資源排程之研究
    Qos-Costrained Scheduling for Uplink SC-FDMA
    Authors: 李昀峻
    Lee, Yun Jun
    Contributors: 張宏慶
    Jang, Hung Chin
    李昀峻
    Lee, Yun Jun
    Keywords: 長期演進技術
    單載波分頻多工技術
    服務質量
    排程
    LTE
    SC-FDMA
    QoS
    schduling
    Date: 2011
    Issue Date: 2012-10-30 14:24:04 (UTC+8)
    Abstract: 隨著無線通訊技術快速的發展,使用者對無線傳輸及品質的要求日益提升。第三代合作夥伴計劃3rd Generation Partnership Project (3GPP)所提出的長期演進技術Long Term Evolution (LTE),是邁入第四代行動通訊系統(4G)的極佳選擇。其中以Single Carrier - Frequency Division Multiple Access (SC-FDMA)系統作為上行鏈路的主要通信技術。
    然而,在上行SC-FDMA中有連續性資源塊配置的規定以及所配置之資源塊需使用相同調變技術的限制。一般而言資源分配的好壞會影響傳輸速率(data rate)與系統效能。因此,如何分配資源以改善傳輸速率與增進系統效能是本論文的研究重點。
    目前,已有許多文獻在探討如何透過偵測頻率響應(frequency response),解決資源分配的問題。但我們發現,透過偵測頻率響應的好壞進行優先權排班,無法有效符合現實網路服務的實際需求。在本論文中,我們擬以三階段的演算法來改善系統中資源分配的問題。第一階段,在time domain排班時根據不同的Quality of Service (QoS)特性區分User Equipment (UE)。在第二階段frequency domain排班時依據通道品質好壞決定優先權以分配無線電資源給UE。最後,我們根據SC-FDMA的兩大重要限制,提出在LTE上行系統中資源分配方法,在滿足Guaranteed Bit Rate (GBR)服務之時間延遲的限制時,亦能提升整體系統效能。
    在模擬分析中,我們利用NS3進行模擬實驗分析,將我們所提出的三階段演算法在不同比例之網路服務類別的要求下,與固定子載波動態資源分配機制以及適應性動態子載波分配機制進行比較。實驗結果顯示,我們的方法在VoIP的average delay time相較於適應性動態分配法最多可改善約82.9%,real time gaming最多可改善約84.9%,而整體系統頻帶利用率(spectrum utilization)相較於固定與適應性分配機制最多可提升約15.3%。
    Long Term Evolution (LTE) is the latest standard of 3rd Generation Partnership Project (3GPP), which is one of the most promising technology for 4G mobile networks. The goal of LTE is to provide high data rate transmission, scalable bandwidth, low latency, and high-mobility. To achieve this goal, the LTE employs Orthogonal Frequency Division Multiplexing (OFDM) for downlink data transmission and Single Carrier - Frequency Division Multiple Access (SC-FDMA) for uplink transmission.
    This thesis focuses on the resource allocation problem of LTE SC-FDMA system. We propose a three-stage approach to improve resource allocation performance. In the first stage, we design a time domain scheduling according to different QoS features and time delay requirement to distinguish user equipment (UE). In the second stage, we design a frequency domain scheduling based on channel state information to give priorities to UEs. Finally, we propose resource allocation methods for LTE uplink under the two constraints of SC-FDMA. The proposed methods are proved to be able to meet the real-time service delay constraints and enhance overall system performance.
    In the simulations, the proposed three stage algorithms are compared to fixed sub-carrier dynamic resource allocation algorithm and adaptive dynamic sub-carrier algorithm against different proportions of network services. Simulation results show that our method outperforms the other two methods in terms of throughput, transmission delay and packet loss ratio.
    Reference: [1] Agilent Technologies, “3GPP Long Term Evolution: System Overview, Product Development and Test Challenges,” pp. 81-86, June 2009.
    [2] Moray Rumney, “3GPP LTE: Introducing Single-Carrier FDMA,” Agilent Measurement Journal, pp. 18-27, January 2008.
    [3] Harri Holma, and Antti Toskala, LTE for UMTS - OFDMA and SC-FDMA Based Radio Access, Wiley: IEEE Press, June 2009.
    [4] Hyung G. Myung, Junsung Lim, and David J. Goodman, “Single Carrier FDMA for Uplink Wireless Transmission,” Vehicular Technology Magazine, IEEE, vol. 1, no. 3, pp. 30-38, September 2006.
    [5] 3GPP, R99, “Universal Mobile Telecommunications System (UMTS): Quality of Service (QoS) concept and architecture,” TS 23.107 v. 3.9.0, February 2002.
    [6] Rabie Almatarneh, Mohamed Ahmed, and Octavia Dobre, “Frequency-Time Scheduling Algorithm for OFDMA Systems,” Electrical and Computer Engineering, IEEE, pp. 776-771, May 2009.
    [7] Yong Li, Na Lu, Mugen Peng, and Wenbo Wang, “Multiuser Resource Allocation for OFDM Downlink with Terminal Bandwidth Limitation,” Wireless Communications and Networking Conference, IEEE, pp. 1-5, April 2010.
    [8] Xu Yang, Yapeng Wang, Dapeng Zhang and Laurie Cuthbert, “Resource Allocation in LTE OFDMA Systems Using Genetic Algorithm and Semi-Smart Antennas,” Wireless Communications and Networking Conference, IEEE, pp. 1-6, April 2010.
    [9] H. Fattah and H. Alnuweiri, “A Cross-Layer Design for Dynamic Resource Block Allocation in 3G Long Term Evolution System,” Mobile Adhoc and Sensor Systems, IEEE, pp. 929-934, October 2009.
    [10] O. Nwamadi, X. Zhu, and A. Nandi, “Enhance Greedy Algorithm Based Dynamic Subcarrier Allocation for Single Carrier FDMA Systems,” Wireless Communications and Networking Conference, IEEE, pp. 1-6, April 2009.
    [11] F. Calabrese, “Scheduling and Link Adaptation for Uplink SC-FDMA Systems,” PhD Thesis/ Department of Engineering, Science and Medicine, University of Aalborg, April 2009.
    [12] Suk-Bok Lee, Ioannis Pefkianakis, Adam Meyerson, Shugong Xu and Songwu Lu, “Proportional Fair Frequency-Domain Packet Scheduling for 3GPP LTE Uplink,” INFOCOM 2009, IEEE, pp. 2622-2615, April 2009.
    [13] Yun-Fang Chen, Chin-Min Hu, “Inter Cell Interference mitigation in OFDMA Cellular System,” Department of Communication Engineering, National Central University, Taiwan, R.O.C. 2010.
    [14] O. Nwamadi, X. Zhu and A. K. Nandi, “Dynamic Physical Resource Block Allocation Algorithms for Uplink Long Term Evolution,” Communications 2011, IET, vol. 5, pp. 1020-1027, May 2011.
    [15] Liang Zhang, “Network Capacity, Coverage Estimation and Frequency Planning of 3GPP Long Term Evolution,” Master Thesis/ Department of Electrical Engineering, Automatic Control, University of Linköpings, September 2010.
    [16] “The Network Simulator ns-3” (NS-3). Retrieved:
    http://www.nsnam.org/docs/release/3.13/tutorial/singlehtml/index.html, February 2012.
    [17] “ns-3 LTE module documentation-LENA M2 documentation” Open Source Project. Retrieved:
    http://lena.cttc.es/manual/, February 2012.
    Description: 碩士
    國立政治大學
    資訊科學學系
    99753027
    100
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0997530271
    Data Type: thesis
    Appears in Collections:[資訊科學系] 學位論文

    Files in This Item:

    File SizeFormat
    027101.pdf1900KbAdobe PDF21735View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback