English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113822/144841 (79%)
Visitors : 51780447      Online Users : 553
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/54796


    Title: Hes-1 的類小泛素化修飾可調節 Hes-1 蛋白質的穩定及 GluR1 的表現
    Sumoylation of Hes-1 regulates the protein stability of Hes-1 and GluR1 expression
    Authors: 許芳芸
    Hsu, Fang Yun
    Contributors: 李小媛
    趙知章

    Lee, Hsiao Yuen
    Chao, Chih Chang

    許芳芸
    Hsu, Fang Yun
    Keywords: 穩定度
    類小泛素化修飾
    stability
    sumoylation
    Date: 2011
    Issue Date: 2012-10-30 11:46:17 (UTC+8)
    Abstract: 轉譯後修飾作用
    (post-translational modifications) 包含甲基化
    (methylation)、磷酸化
    (phosphorylation)、泛素化
    (ubiquitination)、類小泛素
    化修飾
    (sumoylation) 等。過去有研究指出類小泛素化修飾可以調節目標蛋白
    質的穩定度,進而調節許多細胞內反應,例如:細胞核運輸作用、
    DNA 複
    製、調節轉錄作用、染色體分離、訊息傳遞、細胞週期調控、DNA 修補作用等
    現象。類小泛素化修飾是藉由一系列的酵素,使類小泛素這個蛋白質能夠修飾
    目標蛋白質的
    lysine
    殘基。
    類小泛素化修飾是一個可逆性動態修飾過程,類
    小泛素化修飾連結途徑包含有三個主要的步驟:
    活化 (activation),結合
    (conjugation),連接 (ligation),它們分別是藉由
    E1、E2 和
    E3 這三種不同的
    酵素催化的。本篇研究主要是藉由類小泛素
    E3 連接酶 PIAS1 進行修飾作用,
    我們發現
    Hairy and Enhancer of split 1 (Hes-1) 蛋白質可被類小泛素修飾。若
    將類小泛素
    E3 連接酶 PIAS1 突變,就無法讓野生型
    Hes-1 進行類小泛素修
    飾化,證實
    PIAS1 的參與對於類小泛素化修飾扮演重要的角色。除此之外,
    將類小泛素目標蛋白質
    Hes-1 序列上第八個位置的
    lysine 突變,會抑制
    Hes-1 進行類小泛素化修飾。因此,透過
    PIAS1 所進行的類小泛素化修飾可以
    使目標蛋白質
    Hes-1 蛋白質更為穩定。之後更進一步探討在空間學習與記憶
    中,Hes-1 進行類小泛素化修飾與
    GluR1 蛋白質表現的關係。實驗結果顯示,
    Hes-1 進行類小泛素化修飾使空間學習與記憶變差並使
    GluR1 蛋白質表現下
    降。
    There are several post-translational modifications including methylation、
    phosphorylation、ubiquitination、sumoylation, etc. Previously studies
    indicated that sumoylation can regulate target protein stability. Sumoylation
    also modulates many cellular processes, including nuclear transport, DNA
    replication, transcription, chromosome segregation, signal transduction, cell
    cycle and DNA repair. Sumoylation is a process mediated by SUMOs which
    are attached to specific lysine residues of target proteins by the action of a
    series of enzymes. Sumoylation is a dynamically reversible process.
    Sumoylation consists of three steps:activation, conjugation and ligation,
    which are respectively mediated by E1, E2 and E3 ligase. This study focuses
    on SUMO modification by E3 ligase. Here, we identified a new target protein,
    Hairy and Enhancer of split 1 (Hes-1), for SUMO conjugation. The E3 ligase
    deficient mutant of PIAS1 that leads to failure of Hes-1 protein sumoylation.
    We demonstrared that PIAS1 is involved in SUMO modification of Hes-1. In
    addition mutantion of Hes-1 protein on lysine 8 residue that inhibits the
    sumoylation of Hes-1. Therefore, sumoylation of Hes-1 regulates the protein
    stability of Hes-1. Further study of the relationship between sumoylation of
    Hes-1 and GluR1 in spatial memory formation indicated that spatial memory
    is impaired and GluR1 protein expression is decreased upon sumoylation of
    Hes-1.
    Reference: Abdallah B, Hassan A, Benoist C, Goula D, Behr JP, Demeneix BA (1996) A powerful nonviral
    vector for in vivo gene transfer into the adult mammalian brain: polyethylenim
    ine. Hum Gene Ther 7:1947-1954.
    Amaral DG, Witter MP (1989) The three-dimensional organization of the hippocampal formation:
    a review of anatomical data. Neuroscience 31:571-591.
    Amunts, K., Kedo, O., Kindler, M., Pieperhoff, P., Mohlberg, H., Shah, N.J., Habel, U., Schneider,
    F., and Zilles, K. (2005) Cytoarchitectonic mapping of the human amygdala,
    hippocampal region and entorhinal cortex: intersubject variability and probability
    maps. Anatomy and embryology 210(5-6): 343-352.
    Andrews Emily A., Palecek Jan, Sergeant John, Taylor Elaine, Alan R. Lehmann, Watts
    Felicity Z.(2005) Nse2, a Component of the Smc5-6 Complex, Is a SUMO Ligase
    Required for the Response to DNA Damage. Mol Cell Bio. 25:185-196.
    Atkins CM, Selcher JC, Petraitis JJ, Trzaskos JM, Sweatt JD (1998) The MAPK cascade
    is required for mammalian associative learning. Nat Neurosci 1:602-609.
    Akazawa C, Sasai Y, Nakanishi S, Kageyama R. (1992) Molecular characterization of
    aolrt negative regulator with a basic helix-loop-helix structure predominantly
    expressed in the developing nervous system.J Biol Chem.267:21879–21885.
    Artavanis-Tsakonas S, Rand MD, lake RJ.(1999) Notch signaling : cell fate control and
    signal integration in development. Science.284:770–776.
    Arora T, Liu B, He H, Kim J, Murphy TL, Murphy KM, Modlin RL, Shuai K (2003) PIASx
    is a transcriptional co-repressor of signal transducer and activator of
    transcription 4. J Biol Chem 278:21327-21330.
    Ayaydin, F. and Dasso, M.(2004)Distinct in vivo dynamics of vertebrate SUMO paralogues.
    Mol. Biol. Cell 15, 5208-5218.
    Bae S, Bessho Y, Hojo M, Kageyama R.(2000)The bHLH gene Hes6, an inhibitor of Hes1,
    promotes neuronal differentiation.Development.127:2933–2943.
    Bailey, D. and P. O` Hare. (2004) Characterization of the localization and proteolytic
    activity of the SUMO-specific protease, SENP1. J.Biol.Chem. 279:692-703.
    Bartesaghi R., and L. Ravasi. (1999) Pyramidal neuron types in field CA2 of the guinea
    pig. Brain Res Bull. 50: 263-273.
    Bayer P. , Arndt A., Metzger S., Mahajan R., Melchior F. (1998) Structure determination
    of the small ubiquitin-related modifier SUMO-1. J. Mol. Biol. 280: 275–286.
    Bear M. F., B. W. Connors, and M. A. Paradiso.(2001)Neurotransmitters. In Neurosc ience,
    edited by M. F. Bear. Baltimore, MD: Williams & Wilkins, 2001c.
    Bies, J., J. Markus, and L. Wolff. (2002) Covalent attachment of the SUMO-1 protein
    to the negative regulatory domain of the c-Myb transcription factor modifies its
    stability and transactivation capacity. J.Biol.Chem. 277:8999-9009.
    Burwell RD, Witter MP, Amaral DG (1995) Perirhinal and postrhinal cortices of the rat: a
    review of the neuroanatomical literature and comparison with findings from the
    monkey brain. Hippocampus 5:390-408.
    Cai Q, Robertson ES. (2010) Ubiquitin/SUMO modification regulates VHL protein stability
    and nucleocytoplasmic localization. PLoS One. 9;5(9)
    Cau E, Gradwohl G, Casarosa S, Kageyama R,Guillemot F. (2000). Hes genes regulate
    sequential stages of neurogenesis in the olfactory epithelium. Development.
    127:2323–2332.
    Castella P, Sawai S, Nakao K, Wagner JA,Caudy M. (2000). HES–1 repression of
    differentiation and proliferation in PC12 cells : role for the helix 3–helix 4
    domain in transcription repression. Mol Cell Biol.20:6170–6183.
    Chung CD, Liao J, Liu B, Rao X, Jay P, Berta P, Shuai K (1997) Specific inhibition of Stat3
    signal transduction by PIAS3. Science 278:1803-1805.
    Chen H, Thiagalingam A, Chopra H, Borges MW, Feder JN, Nelkin BD, Baylin SB, Ball
    DW. (1997) Conservation of the lateral inhibition pathway in human lung
    Drosophila cancer : A hairy-related protein (HES–1) directly represses achaetescute
    homolog–1 expression. Proc Natl Acad Sci USA 94:5355–5360.
    Copeland NG, Gilbert DJ, Schindler C, Zhong Z, Wen Z, Darnell JE, Jr., Mui AL,
    Miyajima A, Quelle FW, Ihle JN, et al. (1995) Distribution of the mammalian
    Stat gene family in mouse chromosomes. Genomics 29:225-228.
    Cotman CW, Monaghan DT, Ganong AH. (1988) Excitatory amino acid neurotransmission:
    NMDA receptors and Hebb-type synaptic plasticity. Annu Rev Neurosci.
    1988;11:61-80.
    Davies SN, Collingridge GL (1989) Role of Excitatory Amino-Acid Receptors in Synaptic
    Transmission in Area Ca1 of Rat Hippocampus. Proceedings of the Royal
    Society of London Series B-Biological Sciences 236:373-384.
    Dawson SR, Turner DL, Weintraub H, Parkhurst SM. (1995) Specificity for the hairy/
    enhancer of split basic helix-loop-helix (bHLH) proteins maps outside the
    bHLH domain and suggests two separable modes of transcriptional repression.
    Mol Cell Biol.15:6923–6931.
    Desterro, J. M., M. S. Rodriguez , and R. T. Hay. (1998) SUMO-1 modification of
    IkappaBalpha inhibits NF-kappaB activation. Mol.Cell 2:233-239.
    Duval D, Duval G, Kedinger C, Poch O, Boeuf H (2003) The `PINIT` motif, of a newly
    identified conserved domain of the PIAS protein family, is essential for nuclear
    retention of PIAS3L. FEBS Lett 554:111-118.
    Eichenbaum H, Stewart C, Morris RG(1990) Hippocampal representation in place learning.
    J Neurosci 10:3531-3542.
    Fagg, G. E., Foster, A. C. (1983) Amino acid neurotransmitters and their pathways in the
    mammalian central nervous system. Neuroscience 9: 701-19.
    Fisher AL, Ohsako S, Caudy M. (1996) The WRPW motif of the Hairy-related basic
    helix-loop-helix repressor proteins acts as a 4–amino-acid transcription
    repression and protein-protein interaction domain.Mol Cell Biol.16:2670–2677.
    Fonnum F. (1984) Glutamate : a neurotransmitter in mammalian brain. J Neurochem.
    42(1):1-11.
    Foster TC, Castro CA, Mcnaughton BL (1989) Spatial Selectivity of Rat Hippocampal-
    Neurons-Dependence on Preparedness for Movement. Science 244:1580-1582.
    Frey U, Huang YY, Kandel ER (1993) Effects of cAMP simulate a late stage of LTP in
    hippocampal CA1 neurons. Science 260:1661-1664.
    Gaiano, N., Nye, J. S. and Fishell, G.(2000). Radial glial identity is promoted by Notch1
    signaling in the murine forebrain. Neuron 26, 395-404.
    Gill, G.(2003) Post-translational modification by the small ubiquitin-related modifier SUMO
    has big effects on transcription factor activity. Curr. Opin. Genet. Dev.
    13, 108-113.
    Gill, G.(2004) SUMO and ubiquitin in the nucleus: different functions, similar mechanisms?
    Genes Dev. 18:2046-2059.
    Giri R, Yeh HH, Wu CH, Liu HS. (2008) SUMO-1 Overexpression Increases RbAp46
    Protein Stability and Suppresses Cell Growth. ANTICANCER RESEARCH
    28: 3749-3756.
    Goelet P, Castellucci VF, Schacher S, Kandel ER (1986) The long and the short of
    long-term memory--a molecular framework. Nature 322: 419- 422.
    Goodson, M.L., Hong, Y., Rogers, R., Matunis, M.J., Park-Sarge, O.-K. and Sarge, K.D.
    (2001) SUMO-1 modification regulates the DNA binding activity of heat shock
    transcription factor 2, a promyelocytic leukemia nulear body associated
    transcription factor. J. Biol. Chem. 276, 18513-18518.
    Gross M, Liu B, Tan J, French FS, Carey M, Shuai K. (2001) Distinct effects of PIAS
    proteins on androgen-mediated gene activation in prostate cancer cells.
    Oncogene 20:3880-3887.
    Gross M, Yang R, Top I, Gasper C, Shuai K (2004) PIASy-mediated repression of the
    androgen receptor is independent of sumoylation. Oncogene 23:3059-3066.
    Hatakeyama J, Bessho Y, Katoh K, Ookawara S, Fujioka M, Guillemot F, Kageyama R.
    (2004) Hes genes regulate size, shape and histogenesis of the nervous
    system by control of the timing of neural stem cell differentiation.
    Development.131:5539–5550.
    Hay, R. T. (2005) SUMO: a history of modification. Mol.Cell 18:1-12.
    Hollmann M., and S. Heinemann. (1994) Cloned glutamate receptors. Annu Rev Neurosci.
    17: 31-108.
    Hoege, C., B. Pfander, G. L. Moldovan, G. Pyrowolakis, and S. Jentsch.(2002) RAD6-
    dependent DNA repair is linked to modification of PCNA by ubiquitin and
    SUMO. Nature 419:135-41.
    Hershko, A. and A. Ciechanover.(1998) The ubiquitin system. Annu.Rev.Biochem.
    67:425-479.
    Hojo M, Ohtsuka T, Hashimoto N, Gradwohl G, Guillemot F, Kageyama R. (2000)
    Glial cell fate specification modulated by the bHLH gene Hes5 in mouse
    retina. Development 127:2515–2522.
    Hong Y, Rogers R, Matunis MJ, Mayhew CN, Goodson ML, Park-Sarge OK, Sarge KD.
    (2001) Regulation of heat shock transcription factor 1 by stress-induced SUMO-1
    modification.J Biol Chem. 276(43):40263-7.
    Honjo, T. (1996). The shortest path from the surface to the nucleus : RBP-J kappa
    /Su(H) transcription factor. Genes Cells 1, 1-9.
    Ishibashi M, Ang S-L, Shiota K, Nakanishi S, Kageyama R, Guillemot F. (1995)
    Targeted disruption of mammalian hairy and Enhancer of split homolog-1 (HES-1)
    leads to up-regulation of neural helix-loop-helix factors, premature
    neurogenesis, and severe neural tube defects. Genes Dev9:3136–3148.
    Iso T, Sartorelli V, Poizat C, Iezzi S, Wu H,Chung G, Kedes L, amamori Y. (2001)
    HERP, a novel heterodimer partner of HES/E(spl) in Notch signaling. Mol Cell Biol
    21:6080–6089.
    Issac PS, Ziff EB (1998) Genetic elements regulating HES-1 induction in Wnt-1
    transformed PC12 cells. Cell Growth Differ 9:827–836.
    Jackson PK (2001) A new RING for SUMO : wrestling transcriptional responses into
    nuclear bodies with PIAS family E3 SUMO ligases. Genes Dev
    15:3053-3058.
    Jakobs A, Koehnke J, Himstedt F, Funk M, Korn B, Gaestel M, Niedenthal R (2007)
    Ubc9 fusion-directed SUMOylation (UFDS) : a method to analyze function of
    protein SUMOylation. Nat Methods 4:245-250.
    Jian Ren, Xinjiao Gao, Changjiang Jin, Mei Zhu, Xiwei Wang, Andrew Shaw, Longping
    Wen, Xuebiao Yao and Yu Xue. (2009) Systematic study of protein
    sumoylation : Development of a site-specific predictor of SUMOsp 2.0. Proteomics.
    9:3409-3412.
    Johnson ES, Gupta AA (2001) An E3-like factor that promotes SUMO conjugation to the
    yeast septins. Cell 106:735-744.
    Johnson ES (2004) Protein modification by SUMO. Annu Rev Biochem 73:355-382.
    Johnston D., and D. G. Amaral.(1998) Hippocampus in “The synaptic organization of the
    brain” (GM Shepherd, Ed) chapter 11.
    Kageyama R, Ohtsuka T (1999) The Notch-Hes pathway in mammalian neural
    development. Cell Res 9: 179-188.
    Kageyama R, Ohtsuka T, Hatakeyama J, Ohsaw a R (2005) Rols of bHLH genes in
    neural stem cell differentiation. Exp Cell Res 306: 343-348.
    Kageyama R, Ohtsuka T, Kobayashi T (2008) Roles of Hes genes in neural
    development. Dev Growth Differ 50 Suppl 1: S97-103.
    Kahyo, T., T. Nishida, and H. Yasuda. (2001) Involvement f PIAS1 in the sumoylation
    of tumor suppressor p53. Mol.Cell 8:713-718.
    Kandel ER, Schwartz JH, Jesseell TM. (1991) Principles of neural science. 3rd ed.
    Elseiver Science Publishing Co. New York pp153-160.
    Kesner RP, Hardy JD (1983) Long-term memory for contextual attributes : dissociation
    of amygdala and hippocampus. Behav Brain Res 8:139-149.
    Kerscher, O., R. Felberbaum, and M. Hochstrasser. (2006) Modification of proteins by
    ubiquitin and ubiquitin-like proteins. Annu.Rev.Cell Dev.Biol. 22:159-180.
    Klapp E, Chen SJ, Sweatt JD (1993) Mechanism of protein kinase C activation during
    the induction and maintenance of long-term potentiation probed using a selective
    peptide substrate. Proceedings of the National Academy of Sciences of the
    United States of America 90: 8337-8341.
    Kotaja, N., U. Karvonen, O. A. Janne, and J. J. Palvimo. (2002) PIAS proteins modulate
    transcription factors by functioning as SUMO-1 ligases. Mol. Cell Biol.
    22:5222-5234.
    Kullmann DM, Asztely F.(1998) Extrasynaptic glutamate spillover in the hippocampus:
    evidence and implications. Trends Neurosci. 21(1):8-14.
    Kurepa J, Walker JM, Smalle J, Gosink MM, Davis SJ, Durham TL, Sung DY, Vierstra RD.
    (2003) The small ubiquitin-like modifier (SUMO) protein modification system
    in Arabidopsis. Accumulation of SUMO1 and -2 conjugates is increased by stress.
    J Biol Chem. 28;278(9):6862-72.
    Larkman AU, Jack JJ (1995) Synaptic plasticity : hippocampal LTP. Current Opinion in
    Neurobiology 5:324-334.
    Lee Ching T., Ma Yun L. and Lee Eminy H. Y. (2007) SGK enhances fear memory
    formation through down –regulation of the expression of Hes5. J Neurochem.
    100(6):1531-42.
    Lin Xia , Liang Min, Liang Yao-Yun , Brunicardi F. Charles, Feng Xin-Hua. (2003)
    SUMO-1/Ubc9 Promotes Nuclear Accumulation and Metabolic Stability of
    Tumor Suppressor Smad4.J. Biol. Chem., 278:31043-31048.
    Lin Cheng H,Lee Eminy H. Y. (2012) JNK1 Inhibits GluR1 Expression and GluR1-Mediated
    Calcium Influx through Phosphorylation and Stabilization of Hes-1. The
    Journal of Neuroscience.32(5):1826 –1846.
    Li SJ, Hochstrasser M. (2003) The Ulp1 SUMO isopeptidase : distinct domains
    required for viability, nuclear envelope localization, and substrate specificity.
    J Cell Biol. 160:1069-81.
    Liu B, Liao J, Rao X, Kushner SA, Chung CD, Chang DD, Shuai K (1998) Inhibition
    of Stat1-mediated gene activation by PIAS1. Proc Natl Acad Sci USA
    95:10626-10631.
    Liu B, Yang Y, Chernishof V, Loo RR, Jang H, Tahk S, Yang R, Mink S, Shultz D, Bellone
    CJ, Loo JA, Shuai K (2007) Proinflammatory stimuli induce IKKalphamediated
    phosphorylation of PIAS1 to restrict inflammation and immunity.
    Cell 129:903-914.
    Liu B, Shuai K. (2008) Targeting the PIAS1 SUMO ligase pathway to control inflammation.
    Trends Pharmacol Sci. 29(10):505-9.
    Lungwitz U, Breunig M, Blunk T, Gopferich A (2005)Polyethylenimine-based non-viral gene
    delivery systems. Eur J Pharm Biopharm 60:247-266.
    Maclean, P. D. (1952) Some psychiatric implications of physiological studies on
    frontotemporal portion of limbic ystem (visceral brain). Electroencephalography
    and clinical neurophysiology 4(4): 407-418.
    Mahajan R., Gerace L., Melchior F. (1998) Molecular characterization of the SUMO-1
    modification of RanGAP1 and its role in nuclear envelope association. J. Cell Biol.
    140: 259–270.
    Mack V, Burnashev N, Kaiser KM, Rozov A, Jensen V et al. (2001) Conditional restoration
    of hippocampal synaptic potentiation in Glur-A-deficient mice. Science
    292: 2501-2504.
    Malinow R, Schulman H, Tsien RW (1989) Inhibition of postsynaptic PKC or CaMKII blocks
    induction but not expression of LTP. Science 245:862-866.
    Martres MP, Demeneix B, Hanoun N, Hamon M, Giros B (1998) Up- and down-expression
    of the dopamine transporter by plasmid DNA transfer in the rat brain.
    Eur J Neurosci 10:3607-3616.
    McDonald WH, Pavlova Y, Yates JR , Boddy MN. (2003) Novel essential DNA repair
    proteins Nse1 and Nse2 are subunits of the fission yeast Smc5-Smc6 complex.
    J Biol Chem 278:45460-45467.
    McGaugh JL, Cahill L, Roozendaal B (1996) Involvement of the amygdala in memory
    storage : interaction with other brain systems. Proc Natl Acad Sci USA
    93:13508-13514.
    McNaughton BL, Barnes CA, Meltzer J, Sutherland RJ (1989) Hippocampal Granule
    Cells Are Necessary for Normal Spatial-Learning but Not for Spatially-
    Selective Pyramidal Cell Discharge. Exp Brain Res 76:485-496.
    Melchior F. (2000) SUMO-nonclasssical ubiquitin. Annu. Rev. Cell Dev. Biol. 16: 591-626.
    Meluh, P.B. and Koshlnad, D. (1995) Evidence that the MIF2 gene of s. cerevisiae
    encodes a centromer protein with homology to the mammalian centromer
    protein CENP-C. Mol. Biol. Cell 6 793–807.
    Milner B, Squire LR, Kandel ER (1998) Cognitive neuroscience and the study of memory.
    Neuron 20:445-468.
    Miyoshi G, Bessho Y, Yamada S, Kageyama R. (2004) Identification of a novel basic
    helix-loop-helix gene, Heslike, and its role in GABAergic neurogenesis. J
    Neurosci 24:3672–3682.
    Morris R (1984) Developments of a water-maze procedure for studying spatial
    learning in the rat. J Neurosci Methods 11:47-60.
    Morris RG, Pickering A, Abrahams S, Feigenbaum JD (1996). Space and the hippocampal
    formation in humans. Brain Research Bulletin 40:487–90.
    Nacerddine, K., F. Lehembre, M. Bhaumik, J. Artus, M. Cohen-Tannoudji, C. Babinet,
    Pandolfi, and A. Dejean. (2005) The SUMO pathway is essential for
    nuclear integrity and chromosome segregation in mice. Dev.Cell 9:769-779.
    Nakashima K, Takizawa T, Ochiai W, Yanagisawa M, Hisatsune T, Nakafuku M,
    Miyazono K, Kishimoto T, Kageyama R, Taga T (2001) BMP2-mediated
    alteration in the developmental pathway of fetal mouse brain cells from
    neurogenesis to astrocytogenesis. Proc Natl Acad Sci USA 98:5868–5873.
    Nishida, T. and H. Yasuda. (2002) PIAS1 and PIASxalpha function as SUMO-E3
    ligases toward androgen receptor and repress androgen receptor-dependent
    transcription. J.Biol.Chem. 277:41311-41317.
    Ohtsuka T, Ishibashi M, Gradwohl G, Nakanishi S, Guillemot F, Kageyama R. (1999)
    Hes1 and Hes5 as Notch effectors in mammalian neuronal differentiation.
    EMBO J 18:2196–2207.
    Ohtsuka T, Sakamoto M, Guillemot F, Kageyama R. (2001) Roles of the basic helixloop
    helix genes Hes1 and Hes5 in expansion of neural stem cells of the
    developing brain. J Biol Chem 276:30467–30474.
    Ohsumi Y. (1999) Molecular mechanism of autophagy in yeast, Saccharomyces
    cerevisiae. Philos. Trans. R Soc. London Ser. B Biol Sci. 354:1577-1580.
    O`Keefe J, Dostrovsky J (1971) The hippocampus as a spatial map. Preliminary
    evidence from unit activity in the freely-moving rat. Brain Res 34:171-175.
    Okuma T, Honda R, Ichikawa G, Tsumagari N, Yasuda H (1999) In vitro SUMO-1
    modification requires two enzymatic steps, E1 and E2. Biochem Biophys Res
    Commun 254:693-698.
    Orrego F, Villanueva S. (1993) The chemical nature of the main central excitatory
    transmitter : a critical appraisal based upon release studies and synaptic
    vesicle localization. Neuroscience. 56(3):539-55.
    Paroush Z, Finley Jr RL, Kidd T, Wainwright SM, Ingham PW, Brent R, Ish-Horowictz D.
    (1994) Groucho is required for Drosophila neurogenesis, segmentation,
    and sex determination and interacts directly with hairy-related bHLH proteins.
    Cell 79:805–815.
    Paxinos G. WC (1986) The rat brain in stereotaxic coordinates, Orlando, Academic
    Press.
    Rodriguez, M. S., C. Dargemont, and R. T. Hay. (2001) SUMO-1 conjugation in vivo
    requires both a consensus modification motif and nuclear targeting. J. Biol. Chem.
    20;276:12654-9.
    Rosenmund C, Stern-Bach Y, Stevens CF. (1998) The tetrameric structure of a glutamate
    receptor channel. Science. 280(5369):1596-9.
    Rytinki MM, Kaikkonen S, Pehkonen P, Jääskelänen T, Palvimo JJ. (2009) PIAS
    proteins : pleiotropic interactors associated with SUMO. Cell Mol Life Sci.
    66:3029-41.
    Potts PR, Yu H. (2005) Human MMS21/NSE2 is a SUMO ligase required for DNA
    repair. Mol Cell Biol. 25:7021-32.
    Sasai Y, Kageyama R, Tagawa Y, Shigemoto R, Nakanishi S (1992) Two mammalian
    helix-loop-helix factors structurally related to Drosophila hairy and Enhancer
    of split. Genes Dev 6: 2620-2634.
    Sarazin M, Deweer B, Merkl A, Von Poser N, Pillon B, Dubois B (2002) Procedural
    learning and striatofrontal dysfunction in Parkinson`s disease. Mov Disord
    17:265-273.
    Schwienhorst, I., E. S. Johnson, and R. J. Dohmen.(2000) SUMO conjugation and
    deconjugation. Mol.Gen.Genet. 263:771-786.
    Scoville WB, Milner B (1957) Loss of recent memory after bilatera hippocampal
    lesions. J Neurol Neurosurg Psychiatry 20:11-21.
    Seufert W, Futcher B, Jentsch S. (1995) Role of a ubiquitin-conjugating enzyme in degradation
    of S- and M-phase cyclins. Nature 373:78-81.
    Shuai K (2006) Regulation of cytokine signaling pathways by PIAS proteins. Cell Res
    16:196-202.
    Shuai K, Liu B (2005) Regulation of gene-activation pathways by PIAS proteins in the
    immune system. Nat Rev Immunol 5:593-605.
    Solecki DJ, Liu XL, Tomoda T, Fang Y, Hatten ME (2001) Activated Notch2 signaling
    inhibits differentiation of cerebellar granule neuron precursors by maintaining
    proliferation. Neuron 31:557–568
    Song L, Bhattacharya S, Yunus AA, Lima CD, Schindler C (2006) Stat1 and SUMO
    modification. Blood 108:3237-3244.
    Squire LR, Alvarez P (1995) Retrograde amnesia and memory consolidation : a
    neurobiological perspective. Curr Opin Neurobiol 5:169-177.
    Taelman V, Van Wayenbergh R, Solter M, Pichon B, Pieler T, Christophe D, Bellefroid
    EJ. (2004) Sequences downstream of the bHLH domain of the Xenopus
    hairy-related transcription factor–1 act as an extended dimerization domain
    that contributes to the selection of the partners. DevBiol 276:47–63.
    Tai Derek J C, Hsu Wei L, Liu Yen C, Ma Yun L and Lee Eminy H Y. (2011) Novel
    role and mechanism of protein inhibitor of activated STAT1 in spatial learning.
    The EMBO Journal. 30, 205 - 220.
    Tang Z, El Far O, Betz H, Scheschonka A. (2005) Pias1 interaction and sumoylation
    80
    of metabotropic glutamate receptor 8. J Biol Chem. 280:38153-9.
    Tatham, M. H., E. Jaffray, O. A. Vaughan , J. M. Desterro, C. H. Botting, J. H.
    Naismith, and R. T. Hay. (2001) Polymeric chains of SUMO-2 and SUMO-3
    are conjugated to protein substrates by SAE1/SAE2 and Ubc9. J. Biol.Chem.
    276:35368-35374.
    Takebayashi, K., Y Sasai, Y. Sakai, T. Watanabe, S. Nakanishi, and R. Kageyama. (1994)
    Structure, chromosomal locus, and promoter analysis of the gene encoding
    the mouse helix-loop-helix factor HES-1. Negative autoregulation through the
    multiple N box elements. J Biol Chem. 269:5150-5156.
    Tempé D, Piechaczyk M, Bossis G. (2008) SUMO under stress. Biochem Soc Trans.
    36:874-8.
    Teyler TJ, Discenna P (1987) Long-Term Potentiation. Annual Review of Neuroscience
    10:131-161.
    Tomita, K., Hattori, M., Nakamura, E., Nakanishi, S., Minato, N., Kageyama, R. (1999)
    The bHLH gene Hes1 is essential for expansion of early T cell precursors.
    Genes Dev. 1; 13(9): 1203–1210.
    Verger, A., Perdomo, J., and Crossley, M. (2003) Modification with SUMO : A role in
    transcriptional regulation. EMBO Rep. 4, 137-142.
    Wang YT, Chuang JY, Shen MR, Yang WB, Chang WC, Hung JJ. (2008) Sumoylation
    of Specificity Protein 1 Augments Its Degradation by Changing the Localization
    and Increasing the Specificity Protein 1 Proteolytic Process. J mol biol.
    25; 380(5):869-85.
    Warrington EK, Weiskrantz L (1968) New method of testing long-term retention
    with special reference to amnesic patients. Nature 217:972-974.
    Wilkinson Kevin A. and Henley Jeremy M. (2010) Mechanisms, regulation andconsequences
    of protein SUMOylation. Biochem. J. 428, 133–145.
    Wisden W, Seeburg PH. (1993) Mammalian ionotropic glutamate receptors. Curr Opin
    Neurobiol. 3(3):291-8.
    Zamanillo D, Sprengel R, Hvalby O, Jensen V, Burnashev N et al. (1999) Importance
    of AMPA receptors for hippocampal synaptic plasticity but not for spatial learning.
    Science 284: 1805-1811.
    Zhao, X. , Blobel, G. (2005) A SUMO ligase is part of a nuclear multiprotein complex
    that affects DNA repair and chromosomal organization. Proc. Natl. Acad. Sci.
    USA 102 , 4777-4782.
    Description: 碩士
    國立政治大學
    神經科學研究所
    99754005
    100
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0099754005
    Data Type: thesis
    Appears in Collections:[神經科學研究所] 學位論文

    Files in This Item:

    File SizeFormat
    400501.pdf2436KbAdobe PDF2947View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback