English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114205/145239 (79%)
Visitors : 52590748      Online Users : 736
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/54597


    Title: 保險公司因應死亡率風險之避險策略
    Hedging strategy against mortality risk for insurance company
    Authors: 莊晉國
    Chuang, Chin Kuo
    Contributors: 黃泓智
    楊曉文

    莊晉國
    Chuang, Chin Kuo
    Keywords: 死亡率風險
    Lee Carter model
    CIR model
    Maximum Entropy principle
    Value at risk
    Conditional tail expectation
    Karush-Kuhn-Tucker
    Mortality risk
    Lee Carter model
    CIR model
    Maximum Entropy principle
    Value at risk
    Conditional tail expectation
    Karush-Kuhn-Tucker
    Date: 2011
    Issue Date: 2012-10-30 11:24:37 (UTC+8)
    Abstract: 本篇論文主要討論在死亡率改善不確定性之下的避險策略。當保險公司負債面的人壽保單是比年金商品來得多的時候,公司會處於死亡率的風險之下。我們假設死亡率和利率都是隨機的情況,部分的死亡率風險可以經由自然避險而消除,而剩下的死亡率風險和利率風險則由零息債券和保單貼現商品來達到最適避險效果。我們考慮mean variance、VaR和CTE當成目標函數時的避險策略,其中在mean variance的最適避險策略可以導出公式解。由數值結果我們可以得知保單貼現的確是死亡率風險的有效避險工具。
    This paper proposes hedging strategies to deal with the uncertainty of mortality improvement. When insurance company has more life insurance contracts than annuities in the liability, it will be under the exposure of mortality risk. We assume both mortality and interest rate risk are stochastic. Part of mortality risk is eliminated by natural hedging and the remaining mortality risk and interest rate risk will be optimally hedged by zero coupon bond and life settlement contract. We consider the hedging strategies with objective functions of mean variance, value at risk and conditional tail expectation. The closed-form optimal hedging formula for mean variance assumption is derived, and the numerical result show the life settlement is indeed a effective hedging instrument against mortality risk.
    Reference: Blake, D., and Burrows, W., 2001. “Survivor Bonds: Helping to Hedge Mortality Risk”, Journal of Risk and Insurance 68: 339-348.
    Brockett, P. L., 1991. Information Theoretic Approach to Actuarial Science: A Unification and Extention of Relevant Theory and Applications, Transactions of the Society of Actuaries, 42: 73-115
    Cox, J. C., Ingersoll, Jr., J. E., and Ross, S. A., 1985. “A Theory of the Term Structure of Interest Rates”, Econometrica 53: 385-408.
    Cox, S. H. and Y. Lin, 2007. Natural Hedging of Life and Annuity Mortality Risks,North American Actuarial Journal, 11(3): 1-15.
    Dowd, K., Blake, D., Cairns, A. J. G., and Dawson, P., 2006. “Survivor Swaps”, Journal of Risk & Insurance 73: 1-17.
    Hua Chen, Samuel H. Cox and Zhiqiang Yan, 2010. Hedging Longevity Risk in Life Settlements. Working paper.
    Johnny Siu-Hang Li, 2010. Pricing longevity risk with the parametric bootstrap: A maximum entropy approach, Insurance: Mathematics and Economics, 47:176-186.
    Johnny Siu-Hang Li and Andrew Cheuk-Yin NG.,2011. Canonical valuation of mortality-linked securities, The Journal of Risk and Insurance, Vol. 78, No. 4, 853-884
    Kogure., A., and Kurachi, Y., 2010. A Bayesian Approach to Pricing Longevity Risk Based on Risk-Neutral Predictive Distributions, Insurance: Mathematics and Economics, 46:162-172.
    Kuhn, H. W.; Tucker, A. W., 1951. "Nonlinear programming". Proceedings of 2nd Berkeley Symposium. Berkeley: University of California press. pp. 481-492.
    Kullback, S., and R. A. Leibler, 1951. On Information and Sufficiency, Annals of Mathematical Statistics, 22: 79-86.
    Lee, R.D., Carter, L.R., 1992. Modeling and forecasting US mortality. Journal of the
    American Statistical Association 87, 659_675.
    Pflug, G., 2000. Some Remarks on the Value-at-Risk and the Conditional
    Value-at-Risk. S. Uryasev, ed. Probabilistic Constrained Optimization
    Methodology and Applications. Kluwer, Dordrecht, The Netherlands, 272–281.
    Trindade, A. A., S. Uryasev, A. Shapiro, and G. Zrazhevsky, 2007. Financial
    Prediction with Constrained Tail Risk. Journal of Banking and Finance 31 3524–
    3538.
    Tsai, J.T., J.L. Wang, and L.Y. Tzeng, 2010. On the optimal product mix in life insurance companies using conditional Value at Risk, Insurance: Mathematics and Economics, 46, 235-241.
    Wang, J.L., H.C. Huang, S.S. Yang, J.T. Tsai, 2010. An optimal product mix
    for hedging longevity risk in life insurance companies: The immunization theory
    approach, The Journal of Risk and Insurance, Vol. 77, No. 2, 473-497.
    Description: 碩士
    國立政治大學
    風險管理與保險研究所
    99358007
    100
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0099358007
    Data Type: thesis
    Appears in Collections:[風險管理與保險學系] 學位論文

    Files in This Item:

    File SizeFormat
    800701.pdf741KbAdobe PDF2364View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback