Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/54561
|
Title: | 運用Elman類神經網路與時間序列模型預測LME銅價之研究 A study on applying Elman neural networks and time series model to predict the price of LME copper |
Authors: | 黃鴻仁 Huang, Hung Jen |
Contributors: | 楊建民 Yang, Jiann Min 黃鴻仁 Huang, Hung Jen |
Keywords: | 銅價 Elman類神經網路 時間序列 GARCH模型 向量自我迴歸模型 Copper price Elman neural networks Time series GARCH model Vector Autoregressive model |
Date: | 2011 |
Issue Date: | 2012-10-30 11:21:16 (UTC+8) |
Abstract: | 銅價在近年來不斷的創下歷史新高,由於台灣蓬勃的電子、半導體、工具機產業皆需要銅,因此銅進口量位居全球第五(ICSG,2009),使得台灣企業的生產成本受國際銅價的波動影響甚鉅,全球有70%的銅價是按照英國倫敦金屬交易所(London Metal Exchange, LME)的牌價進行貿易,因此本研究欲建置預測模式以預測銅價未來趨勢。
本研究之資料來源為2003年1月2日至2011年7月14日的LME三月期銅價,並依文獻探討選取LME的銅庫存、三月期鋁價、三月期鉛價、三月期鎳價、三月期鋅價、三月期錫價,以及金價、銀價、石油價格、美國生產者物價指數、美國消費者物價指數、聯邦資金利率作為影響因素的分析資料。時間序列分析、類神經網路已被廣泛的用於預測股市及期貨,本研究先藉由向量自我迴歸模型篩選出有影響力的變數,同時建置GARCH時間序列預測模型與具有遞迴的Elman類神經網路預測模型,再整合兩者建置GARCH-Elman類神經網路預測模型。
本研究之向量自我迴歸模型顯示銅價與金、鋁、銅庫存前第1期;自身前第2期;鎳、錫前第3期;鋅前第4期的變動有負向的影響;受到石油前第2期的變動有正向的影響,這其中以銅的自我解釋變異最高,銅庫存最低,推測其影響已有效率地反映到銅價上。也驗證預測模型必須考量總體經濟變數,且變數先經向量自我迴歸模型的篩選能因減少雜訊而提升類神經網路的預測能力。依此建置的GARCH模型有33.81%的累積報酬率、Elman類神經網路38.11%、整合兩者的GARCH-Elman類神經網路56.46%,皆優於實際銅價指數的累積報酬率。對銅有需求的企業者,能更為準確的預測漲跌趨勢,依此判斷如何跟原物料供應商簽訂合約的價格與期間,使其免於價格趨勢的誤判而提高生產成本,並提出五點建議供未來研究者參考。 The recent copper price in London Metal Exchange (LME) has breaking the historical high. Taiwan’s booming electronics, semiconductor and machine tool industry causing copper import volume ranked fifth in the world (ICSG, 2009). Because of 70% of copper worldwide trade in accordance with the price of the London Metal Exchange, this study using time series and neural networks to build the LME copper price forecast model.
This study considering copper, copper stocks, aluminum, lead, nickel, zinc, tin, gold, silver, oil ,federal funds rate, CPI and PPI during the period of 2003/1/2 to 2011/7/14. Time series model and neural networks have been widely used for forecasting the stock market and futures. In this study, using Vector Autoregressive (VAR) model screened influential variables, building GARCH model and Elman neural network to forecast the LME copper price; and further, integrating this two models to build GARCH-Elman neural network prediction model.
This study’s VAR models show that the copper has negative effect with gold, aluminum, copper stocks, nickel, tin, zinc and itself. And has positive impact with oil prices. The highest of explained variance is copper. Copper stocks are lowest, speculating that its impact has been efficiently reflecting on the price of copper. Verifying the prediction model must consider the macroeconomics variables. Using VAR model screened influential variables can reduce noise to enhance the predictive ability of the neural network. This study’s GARCH model has 33.81% of the cumulative rate of return, Elman neural network has 38.11% and the GARCH-Elman neural network has 56.46%. All of them are better than the actual price of copper. |
Reference: | 1. Anonymous(2005), “ The Global Copper Industry:2004 Review and Forecast,” JOM, Oct. 2005, Issue 10. 2. Bergerson, K., & Wunsch, D.C., I. (1991). A commodity trading model based on a neural network-expert system hybrid. Neural Networks, 1991., IJCNN-91-Seattle International Joint Conference on (Vol. i, pp. 289 –293 vol.1). 3. Bird, P. J. W. N. (1985). The weak form efficiency of the London Metal Exchange. Applied Economics, 17(4), 571–587. 4. Bollerslev, T. (1986), “Generalized Autoregressive Conditional Heteroscedasticity,” Journal of Econometrics 31, 307-327. 5. Bollerslev, T., R.U. Chou, and K.F. Kroner,(1992), “ARCH Modeling in Finance: A Review of the Theory and Empirical Evidence,” Journal of Econometrics 15, 27-37. 6. Brooks, Chris,(2002), Introductory Econometrics for Finance, Cambridge University Press, 439-438. 7. Clement, M.P. and Hendry, D.F. (1998),“Forecasting economic time series”, Cambridge UK:Cambridge University Press. 8. Crowson, P. (2003). Astride mining. London: Mining Journal Books. 9. Dunis, C. L., & Huang, X. (2002). Forecasting and trading currency volatility: an application of recurrent neural regression and model combination. Journal of Forecasting, 317–354. 10. Donaldson, R. G., & Kamstra, M. (1997). An artificial neural network-GARCH model for international stock return volatility. Journal of Empirical Finance, 4(1), 17–46. 11. Donaldson, R. G., & Kamstra, M. (1999). Neural network forecast combining with interaction effects. Journal of the Franklin Institute, 336(2), 227–236. 12. Enders, W. (2004). Applied Econometric Time Series. J. Wiley. 13. Engle,R.F.(2002),“Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models,”Journal of Business & Economic Statistics, 20, 339-350. 14. Engle, R. F. and C.W.J. Granger(1987), “Cointergration and Error Correction : Representative, Estimation, and Testing,” Econometrica 55, 251-276. 15. Engle, R.F., (1982), “Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation,” Journal of Econometrics 50, 987-1007. 16. Fisher, F. M., Cootner, P. H., and Baily, M. N. (1972). An Econometric Model of the World Copper Industry. The Bell Journal of Economics and Management Science, 3(2), 568-609. 17. Freisleben, B., & Ripper, K. (1997). Volatility estimation with a neural network. Computational Intelligence for Financial Engineering (CIFEr), 1997., Proceedings of the IEEE/IAFE 1997 (pp. 177 –181). 18. French, K. R., G. W. Schwert, and R. F. Stambaug, (1987), “Expected Stock Returns and Volatility,” Journal of Financial Economics 19, 13-29. 19. Goss, B. A. (1981). The forward pricing function of the London metal exchange. Applied Economics, 13(2), 133–150. 20. Grudnitski, G., & Osburn, L. (1993). Forecasting S&P and gold futures prices: An application of neural networks. Journal of Futures Markets, 13(6), 631–643. 21. Ham F.M. and Kostanic I. (2001). Principles of Neurocomputing for Science & Engineering. McGraw-Hill: New York, NY. 22. Herfindahl, O. C. (1959). Copper costs and prices. Baltimore: Johns Hopkins for Resources for the Future. 23. Hinich, M.J. and D. M. Patterson,(1985), “Evidence of Nonlinearity in Daily Stock Returns,” Journal of Business and Economic Statistics 3(1), 69-77. 24. Hotelling, H. (1931). The Economics of Exhaustible Resources. Journal of Political Economy, 39(2), 137–175. 25. Howie, P. A. (2002). A study of mineral prices: Analyzing long-term behavior and testing for noncompetitive markets. Unpublished PhD dissertation, Colorado School of Mines, Golden, CO. 26. Hush & Horne (1993). Progress in supervised neural networks. 27. Hwarng, H. B., & Ang, H. . (2001). A simple neural network for ARMA(p,q) time series. Omega, 29(4), 319–333. 28. Jeffrey L., E. (1990). Finding structure in time. Cognitive Science, 14(2), 179–211. 29. Kenourgios, D., & Samitas, A. (2004). Testing Efficiency of the Copper Futures Market: New Evidence from London Metal Exchange. SSRN eLibrary 30. Kimoto, T., Asakawa, K., Yoda, M., & Takeoka, M. (1990.). Stock market prediction system with modular neural networks (pp. 1–6). IEEE. 31. Kmenta, J. (1997). Elements of econometrics. University of Michigan Press. 32. Komo, D., Chang, C.-I., & Ko, H. (1994). Neural network technology for stock market index prediction. Speech, Image Processing and Neural Networks, 1994. Proceedings, ISSIPNN ’94., 1994 International Symposium on (pp. 543 –546 vol.2). 33. Krautkraemer, J. A. (1998). Nonrenewable resource scarcity. Journal of Economic Literature, 36(December),2065–2107. 34. Kuan,C.M.White,H.(1994),“Artificial neural networks: An econometric perspective”, Econometric Reviews, 13, 1-91. 35. Ma, C. K. (1985). Spreading between the Gold and Silver Markets: Is There a Parity? Journal of Futures Markets, 5(4), 579-594. 36. Manthy, R. S. (1978). Natural resource commodities—A century of statistics. Baltimore: Johns Hopkins for Resources for the Future. 37. Martin T.H., Howard B.D., Mark B.,(1997), “Neural network design,” PWS Publishing Co., Boston, MA, USA. 38. Michaelj, A. Berry (1997), “Data Mining Techniques For Marketing, sales, and Customer Support”, Wiley Computer Publishing. 39. Nordhaus, W. D. (1974). Resources as a constraint on growth. American Economic Review, 64(1), 22–26. 40. Otto, S. (2010). Does the London Metal Exchange Follow a Random Walk? Evidence from the Predictability of Futures Prices. Open Economics Journal, 3, 25–42. 41. Pesaran, M.H., Timmermann, A., (1992). A simple non-parametric test of predictive performance.Journal of Business and Economic Statistics 10, 467-465. 42. Pindyck, R.S., and Rotemberg, J. J. (1990): “The Excess Co-movement of Commodity Prices ” ,Economic Journal, 100:1173-1189. 43. Potter, N., & Christy, F. T. Jr., (1962). Trends in natural resource commodities: Statistics of prices, output,consumption, foreign trade, and employment in the United States, 1870–1957. Baltimore: Johns Hopkins for Resources for the Future. 44. Ramanujam, P., & Vines, D. (1990). Commodity prices, financial markets and world imcome: a structural rational expectations model. Applied Economics, 22(4), 509-527. 45. Robert, & Julio. (1990). The Excess Co-movement of Commodity Prices. Economic Journal, 100(403), 1173–89. 46. Saad, E. W., Prokhorov, D. V., & Wunsch, D. C. (1996). Advanced neural network training methods for low false alarm stock trend prediction. Neural Networks, 1996., IEEE International Conference on (Vol. 4, pp. 2021 –2026 vol.4). 47. Said, S. E. and D. A. Dickey(1984), “Testing for Unit Roots in Autoregressive Moving Average Models of Unknown Order,” Biometrika 71 , 599-607. 48. Slade, M. E. (1982). Trends in natural-resource commodity prices: An analysis of the time domain.Journal of Environmental Economics and Management,9(1), 122–137. 49. Svedberg, P., & Tilton, J. E. (2006). The real, real price of nonrenewable resources: copper 1870-2000. World Development, 34(3), 501–519. 50. Taylor, S. J. (1980). Conjectured Models for Trends in Financial Prices, Tests and Forecasts. Journal of the Royal Statistical Society. Series A (General), 143(3), 338–362. 51. Tong, X., Wang, Z., & Yu, H. (2009). A research using hybrid RBF/Elman neural networks for intrusion detection system secure model. Computer Physics Communications, 180(10). 52. Valencia, Clandio A(2005),“An Econometric Study of The World Copper Industry,"Ph.D., Colorado School of Mines. 53. Vartanesyan, Sosi Zepur(1993),“The Short-run Behavior of The Price of Copper:Financial Markets and Fundamentals,"Ph.D., New York University. 54. Vial, Joaquin R(1988),“An Econometric Study of The World Copper Market,"Ph.D., University of Pennsylvania. 55. Zurada, J. M. (1992). Introduction to Artificial Neural Systems. Pws Pub Co. 56. 王尊賢(2006)。國際銅價決定機制與影響因素之實證分析。未出版碩士,中原大學國際貿易研究所,桃園縣 57. 李惠妍(2003)。類神經網路與迴歸模式在台股指數期貨預測之研究。未出版碩士,國立成功大學企業管理學系(EMBA)專班,台南市 58. 侯惠月(2000)。統計方法與類神經網路在台股指數期貨之研究。未出版碩士,國立成功大學統計學系,台南市 59. 洪振家(2009)。以模糊時間序列為主的類神經網路方法預測臺灣證券交易所股價指數選擇權價格。未出版碩士,國立臺灣科技大學資訊管理系,台北市 60. 洪雪卿(2005)。總體經濟指標新聞發佈對台灣股市之影響。未出版博士,國立台北大學企業管理學系,台北縣 61. 張振魁(2000)。以類神經網路提高股票單日交易策略之獲利。未出版碩士,國立中央大學資訊管理研究所,桃園縣 62. 陳國玄(2004)。人工神經網路與統計方法應用於台灣上市電子類股價指數預測與分類之研究。未出版碩士,國立成功大學統計學系,台南市 63. 陳聖明(2003)。台灣、日本與香港股市間互動、波動不對稱性及外溢效果之研究-三元不對稱VECM-GARCH-M之應用-。未出版碩士,國立台北大學合作經濟學系,台北縣 64. 楊奕農(2010)。時間序列分析:經濟與財務上之應用,雙葉書廊。 65. 蔡明翰(2008)。應用ARIMA與GARCH模式於台灣運輸產業股價之預測。未出版碩士,國立交通大學運輸科技與管理學系,新竹市 66. 蔡瑞煌(1995)。類神經網路概論,三民書局。 67. 羅莉莉(2004)。期貨市場交叉避險策略分析-以銅商品交易為例。未出版碩士,中原大學會計研究所,桃園縣 68. 羅華強(2011)。類神經網路:MATLAB的應用,高立圖書。 69. 鐘正良(1995)。類神經網路之應用—黃金期貨預測。未出版碩士,國立政治大學統計學系,台北市 70. 2010 World Copper Factbook.pdf. Retrieved from http://www.icsg.org/index.php?option=com_docman&task=doc_download&gid=278&Itemid=61 71. Toovey, L. (2010, November 17). The Top 10 Copper Producing Countries | Copper Investing News. Retrieved February 16, 2012, from http://copperinvestingnews.com/4147/the-top-10-copper-producing-countries/ 72. 寶來曼氏期貨資訊網. Retrieved June 5, 2011, from http://www.pmf.com.tw/newversion/prodclass/foreign_7_c.php?ShowType=1 |
Description: | 碩士 國立政治大學 資訊管理研究所 99356004 100 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0099356004 |
Data Type: | thesis |
Appears in Collections: | [資訊管理學系] 學位論文
|
Files in This Item:
File |
Size | Format | |
600401.pdf | 1866Kb | Adobe PDF2 | 557 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|