English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114105/145137 (79%)
Visitors : 52191268      Online Users : 809
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/53127


    Title: 預測性迴歸之間接推論
    Other Titles: Indirect Inference on the Predictive Regression
    Authors: 郭炳伸
    Contributors: 國立政治大學國際貿易學系
    行政院國家科學委員會
    Keywords: 預測性迴歸;間接推論法;偏誤;偏誤函數
    Date: 2011
    Issue Date: 2012-06-22 09:49:18 (UTC+8)
    Abstract: 「預測性迴歸」(predictive regression) 在財務金融領域的應用相當廣泛。在此類迴歸模型中, 解釋變數通常為某資產價格的報酬, 而預測變數則為與前述資產價格相關的落後變數。雖然模型形式相當簡單, 但由於資產價格報酬的高度波動性(volatile), 輔以解釋變數的自我迴歸性質 (autoregressive), 使得常用的最小平方估計式面臨有限樣本偏誤(finite sample bias) 與高變異數的估計風險。影響所及, 除了降低樣本外預測的精確性外, 據以形成檢定與推論也不可信賴。本計劃嘗試發展一種適合於預測性迴歸的「間接推論法」(indirect inference method), 藉以修正有限樣本估計問題。該方法的優點在於不需要暸解基礎估計式(base estimator, 如最小平方估計式) 偏誤函數的確切型式, 而是透過電腦模擬基礎估計式的均數與真實參數值間的對應關係, 逆向獲得不偏的參數估計。再者, 間接推論估計式的分配性質與基礎估計式直接相關。因此, 若基礎估計式選取得當, 間接推論估計式將可同時具備不偏與低變異數的優良性質。預期透過間接推論估計式低估計風險的性質, 除可有效解決預測性迴歸文獻上常面臨的型一誤差扭曲(size distortion) 問題外, 同時可強化檢定的對立假設偵測能力。
    Predictive regression has been widely used in the empirical financial literature. It is to investigate whether some fundamental predictors in lagged form could explain the variation of the rate of return of the assets of concern. The least-squares (LS) estimator which is usually applied to the regression, however, suffers from considerable estimation risks, consisting of bias and high errors. The problems come from both the excessive volatility in the rate of return series and the high persistence of the predicting variables, 2 typical features of the financial time series. Inference based on the estimator tends to be not as trustworthy, because of the size distortion resulting from the bias. The situation is further compounded by the high estimation errors, leading to a likely inability of the tests to detect the existence of the predictability. This project attempts to address the problems by the indirect inference. The simulationbased approach has the advantage that it corrects the bias of the base estimator (in our case the LS estimator) with accuracy, without requiring any explicit form for the bias function. This merit is particularly notable in the context where the predictor is commonly characterized by a high-order autoregression. Moreover, the efficency gains may well be anticipated when alternative base estimator is appropriately chosen. The predictability hypothesis can then be soundly examined by tests with proper size and more power when based on the proposed indirect inference estimator in sample or out of sample.
    Relation: 基礎研究
    學術補助
    研究期間:10008~ 10107
    研究經費:386仟元
    Data Type: report
    Appears in Collections:[國際經營與貿易學系 ] 國科會研究計畫

    Files in This Item:

    File Description SizeFormat
    100-2410-H004-069.pdf617KbAdobe PDF2583View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback