政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/52636
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 114205/145239 (79%)
造訪人次 : 52618761      線上人數 : 485
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    政大機構典藏 > 資訊學院 > 資訊科學系 > 學位論文 >  Item 140.119/52636
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/52636


    題名: 以社群標籤組為基礎之不同角度文章之推薦
    Using social tags for comprehensive document recommendation
    作者: 鄭挺拔
    Cheng, Ting Pa
    貢獻者: 陳良弼
    Chen, Arbee L.P.
    鄭挺拔
    Cheng, Ting Pa
    關鍵詞: 社群性標籤
    推薦系統
    social tag
    recommendation
    日期: 2011
    上傳時間: 2012-04-12 14:12:14 (UTC+8)
    摘要: 近年來,推薦系統(recommendation system)相關研究是一個很熱門的議題,當使用者看到一篇文章,對該文章所描述的事件很感興趣,想要了解該事件的全貌,此時想要得到是該事件的通盤的見解,而非局部的意見,也就是以不同角度去解析此事件的文章清單時,若以過去傳統推薦系統的作法,推薦與這篇文章相似的文章給使用者就未必合適,因為相似文章只能反映對此事件相同角度,而非對此事件不同角度的文章。因此,本研究擬使用社群性標籤(social tag)解決以上問題。透過不同使用者標註標籤反映不同看法的機制,我們可以從文章中選出代表性的標籤,透過該標籤組與文章分數計算,找出對此事件不同角度的文章清單推薦給使用者。實驗結果顯示,若文章有較高的可信度擁有多種角度,則使用我們提出的演算法確實擁有較好的準確度。
    參考文獻: [1] Ciro Cattuto, Dominik Benz, Andreas Hotho and Gerd Stumme. Semantic Analysis of Tag Similarity Measures in Collaborative Tagging Systems. Knowledge&Data Engineering Group, 2008.
    [2] Christian Wartena, Rogier Brussee and Martin Wibbels. Using Tag Co-occurrence for Recommendation. Proceedings of the 9th ACM ISDA International Conference on Intelligent Systems Design and Applications, 2009.
    [3] Petros Venetis, Georgia Koutrika and Hector Garcia-Molina. On the Selection of Tags for Tag Clouds. Proceedings of the 4th ACM WSDM international conference on Web Search and Data Mining, 2011.
    [4] Dong Liu, Xian-Sheng Hua, Linjun Yang, Meng Wang and Hong-Jiang Zhang. Tag Ranking. Proceedings of the 18th ACM WWW international conference on World Wide Web, 2009.
    [5] Lei Wu, Linjun Yang, Nenghai Yu and Xian-Sheng Hua. Learning to Tag. Proceedings of the 18th ACM WWW international conference on World Wide Web, 2009.
    [6] Fabiano Belem, Eder Martins, Jussara Almeida, Marcos Goncalves and Gisele L. Pappa. Exploiting Co-Occurrence and Information Quality Metrics to Recommend Tags in Web 2.0 Applications. Proceedings of the 19th ACM CIKM international Conference on Information and Knowledge Management, 2010.
    [7] Ning Zhang, Yuan Zhang and Jie Tang. A Tag Recommendation System for Folksonomy. Proceedings of the 2nd ACM SWSM workshop on Social Web Search and Mining, 2009.
    [8] Ziyu Guan, Jiajun Bu, Qiaozhu Mei, Chun Chen and Can Wang. Personalized Tag Recommendation Using Graph-based Ranking on Multi-type Interrelated Objects. Proceedings of the 32nd international ACM SIGIR conference on Special Interest Group on Information Retrieval, 2009.
    [9] Ido Guy, Naama Zwerdling, Inbal Ronen, David Carmel and Erel Uziel. Social Media Recommendation based on People and Tags. Proceedings of the 33nd international ACM SIGIR conference on Special Interest Group on Information Retrieval, 2010.
    [10] Börkur Sigurbjörnsson and Roelof van Zwol. Flickr Tag Recommendation based on Collective Knowledge. Proceedings of the 17th ACM WWW international conference on World Wide Web, 2008.
    描述: 碩士
    國立政治大學
    資訊科學學系
    98753015
    100
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0098753015
    資料類型: thesis
    顯示於類別:[資訊科學系] 學位論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    index.html0KbHTML2300檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋