English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113656/144643 (79%)
Visitors : 51722240      Online Users : 626
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 應用數學系 > 學位論文 >  Item 140.119/52634
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/52634


    Title: 以目標規劃模型建立成長型投資組合
    Constructing a growth Portfolio by goal programming model
    Authors: 曾清文
    Contributors: 劉明郎
    曾清文
    Keywords: 目標規劃
    大中取小原則
    成長型投資組合
    goal programming
    mini-max principle
    growth portfolio
    Date: 2011
    Issue Date: 2012-04-12 14:11:57 (UTC+8)
    Abstract: 本論文使用大中取小原則及目標規劃技術,提出建構投資組合的數學規劃模型。要求此投資組合面對於不確定的股市,能夠在控制風險最小的情況下穩定且具有成長性的獲利。論文內探討如何透過數學的限制式來控制風險,而又能兼顧穩定且具有成長性的獲利,同時模型也可針對不同投資者的需求設定其數學規劃模型。最後以台灣股票市場做為實證分析的對象,給予不同的參數設定來驗證投資組合的表現。實證發現若以期初的配置比重持有到投資期間結束,此投資方式的績效欠佳。因此論文中進一步探討最佳的調整週期,實證顯示每經過8週,根據最新的資訊,重新調整建立新的投資組合,投資績效最好。
    This thesis proposed a mathematic programming model to construct a growth portfolio by using the mini-max principle and goal programming technique. The constructed portfolio is required to minimize the risk and to earn a stable profit under uncertain market. In the thesis, we discussed how to control the risk and maintain the growth of the portfolio by using the linear constraints. The proposed model also provides several parameters setting to meet the different investors` requirement. Finally, an empirical study will be provided by using the data from Taiwan’s stock market. The portfolios are constructed by giving different parameters and the performances are reported. The empirical study showed that holding a portfolio through the entire investment period without rebalance yield the performances that are not good. Therefore, the rebalance timing is investigated and the empirical study showed that a portfolio with rebalance strategy by every 8 weeks yield the best performance.
    摘要............................................v

    第一章 緒論……………........……………………………………………………………..1
    1.1 研究動機…………..........………………………………………………………….1
    1.2 研究目的與架構… ………………………………………………………….3

    第二章 非線性轉變為線性的數學模型之文獻回顧………………………………..4
    2.1 Markowitz的貢獻與數學模型…………………………………………..…..5
    2.2 線性化的風險函數……………………………………………………...…..8
    2.3 其他投資組合的選取方法…………………………………………….......15

    第三章 數學規劃模型………………………………………………………………18
    3.1以利潤為考量所建立的限制式……………………………………………19
    3.2以風險為考量所建立的限制式……………………………………………21
    3.3建立數學規劃模型…………………………………………………………23

    第四章 實證研究……………………………………………………………………26
    4.1 檢測模型在不同時間段的有效性………………………………………...28
    4.2檢測單一投資標的投資金額比重不同上限的表現………………………32
    4.3檢測定期調整投資組合的必要性……………….…………….…………..40

    第五章 結論與建議…………………………………………………………………47
    5.1 結論……………………………………………………….………………..47
    5.2 建議................…………………………………………………...…………48
    參考文獻……………………………………………………………………………..49
    Reference: Feinstein, C. D. and M. N. Thapa, A reformulation of a mean-absolute deviation portfolio optimization model, Management Science 39, 1552-1553 (1993).
    Konno, H. and H. Yamazaki, Mean-absolute deviation portfolio optimization model and its applications to Tokyo stock market, Management Science 37, 519-531 (1991).
    Markowitz, H., Portfolio selection, Journal of Finance 7, 77-91 (1952).
    Richard E. Rosenthal, GAMS-A User’s Guide, GAMS Development Corporation, Washington, DC, USA (2008).
    Sang M. Lee and Delton L. Chesser, Goal programming for portfolio selection, The Journal of Portfolio Management Spring, 22-26 (1980).
    Sharpe, W. F., A linear programming algorithm for mutual fund portfolio selection, Management Science 13, 499-510 (1967).
    Sharpe, W. F., A linear programming approximation for the general portfolio analysis problem, Journal of Financial and Quantitative Analysis (December), 1263-1275 (1971).
    Speranza, M. G., Linear programming models for portfolio optimization, Finance 14, 107-123 (1993).
    Speranza, M. G., A heuristic algorithm for a portfolio optimization model applied to the Milan stock market, Computers & Operations Research 23, 433-441 (1996).
    Xia, Y., B. Liu, S. Wang and K. K. Lai, A model for portfolio selection with order of expected returns, Computers & Operations Research 27, 409-422 (2000).
    Young, M. R., A minimax portfolio selection rule with linear programming solution, Management Science 44, 673-683 (1998).
    王靜亮,成長基金的最佳化模型,國立政治大學應用數學系碩士論文,民國96年。
    朱志達,超越指數績效的投資組合最佳化模型,國立政治大學應用數學系碩士論文,民國100年。
    Description: 碩士
    國立政治大學
    應用數學系數學教學碩士在職專班
    98972011
    100
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0098972011
    Data Type: thesis
    Appears in Collections:[應用數學系] 學位論文

    Files in This Item:

    File SizeFormat
    index.html0KbHTML2287View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback