English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114205/145239 (79%)
Visitors : 52553840      Online Users : 692
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/49690


    Title: 動態規劃數值解 :退休後資產配置
    Dynamic programming numerical solution: post retirement asset allocation
    Authors: 蔡明諺
    Tsai, Ming Yen
    Contributors: 黃泓智
    Huang, Hong Chih
    蔡明諺
    Tsai, Ming Yen
    Keywords: 資產配置
    動態規劃
    數值解
    二次損失函數
    破產機率
    Asset Allocation
    Dynamic Programming
    Numerical Solution
    Quadratic Loss Function
    ruin probability
    Date: 2009
    Issue Date: 2010-12-08 16:51:01 (UTC+8)
    Abstract: 動態規劃的問題並不一定都存在封閉解(closed form solution),即使存在,其過程往往也相當繁雜。本研究擬以 Gerrard & Haberman (2004) 的模型為基礎,並使用逼近動態規劃理論解的數值方法來求解,此方法參考自黃迪揚(2009),其研究探討在有無封閉解的動態規劃下,使用此數值方法求解可以得到
    逼近解。本篇嘗試延伸其方法,針對不同類型的限制,做更多不同的變化。Gerrard & Haberman (2004)推導出退休後投資於風險性資產與無風險性資產之最適投資策略封閉解, 本研究欲將模型投資之兩資產衍生至三資產,分別投資在高風險資產、中風險資產與無風險資產,實際市場狀況下禁止買空賣空的情況與風險趨避程度限制資產投資比例所造成的影響。並探討兩資產與三資產下的投資結果,並加入不同的目標函數:使用控制變異數的限制式來降低破產機率、控制帳戶差異部位讓投資更具效率性。雖然加入這些限制式會導致目標函
    數過於複雜,但是用此數值方法還是可以得出逼近解。
    Dynamic Programming’s solution is not always a closed form. If it do exist, the solution of progress may be too complicated. Our research is based on the investing model in Gerrard & Haberman (2004), using the numerical solution by Huang (2009) to solve the dynamic programming problem. In his research, he found out that whether dynamic programming problem has the closed form, using the numerical solution to solve the problems, which could get similar result. So in our research, we try to use this solution to solve more complicate problems.
    Gerrard & Haberman (2004) derived the closed form solution of optimal investing strategy in post retirement investment plan, investing in risky asset and riskless asset. In this research we try to invest in three assets, investing in high risk asset, middle risk asset and riskless asset. Forbidden short buying and short selling, how risk attitude affect investment behavior in risky asset and riskless asset. We also observe the numerical result of 2 asset and 3 asset, using different objective functions : using variance control to avoid ruin risk, consideration the distance between objective account and actual account to improve investment effective. Although using these restricts may increase the complication of objective functions, but we can use this numerical solution to get the approximating solution.
    Reference: 1. Bacinello, A.R., 1988. "A stochastic simulation procedure for pension scheme". Insurance: Mathematics and Economics, vol.7, 153–161.
    2. Blake, D., Cairns, A. J. G. and Dowd, K., 2001. "Pensionmetrics: Stochastic pension plan design and value-at-risk during the accumulation phase". Insurance: Mathematics and Economics, vol.29, 187-215
    3. Blake, D., Cairns, A. J. G. and Dowd, K., 2003. "Pensionmetrics 2: Stochastic pension plan design during the distribution phase". Insurance: Mathematics and Economics, vol.33, 29-47
    4. Bordley, R., Li Calzi, M., 2000. "Decision analysis using targets instead of utility functions". Decisions in Economics and Finance, vol.23, 53-74.
    5. Browne, S., 1995. "Optimal investment policies for a firm with a random risk process: exponential utility and minimizing the probability of ruin". Mathematics of Operations Research, vol. 20, 937-958.
    6. Chang, S.C., 1999. "Optimal Pension Funding Through Dynamic Simulations: the Case of Taiwan Public Employees Retirement System". Insurance: Mathematics and Economics, vol.24, 187-199.
    7. Davidoff, T., Brown, J.R., Diamond, P.A., 2005. "Annuities and individual welfare". American Economic Review, vol.95, 1573-1590.
    8. Delong, Ł., 2005. "Optimal investment strategy for a non-life insurance company: quadratic loss". Appl. Math. (Warsaw), vol.32, 263-277.
    9. Delong, Ł., Gerrard, R., Haberman, S., 2008. "Mean-variance optimization problems for an accumulation phase in a defined benefit plan". Insurance: Mathematics and Economics, vol.35, 321-342.
    10. Gerrard, R., Haberman, S., Vigna, E., 2004. "Optimal investment choices post-retirement in a defined contribution pension scheme". Insurance: Mathematics and Economics, vol. 35, 321-342
    11. Haberman, S., Sung, J.H., 1994. "Dynamic Approaches to Pension Funding". Insurance: Mathematics and Economics, vol.15, 151-162
    12. Haberman, S., Vigna, E., 2002. "Optimal Investment Strategies and risk measures in defined contribution pension schemes". Insurance: Mathematics and Economics, vol.31, 35-69
    13. He, L., Liang, Z., 2009. "Optimal financing and dividend control of the insurance company with fixed and proportional transaction costs". Insurance: Mathematics and Economics, vol.44, 88-94
    14. Horneff, W. J., Maurer, R. H., Mitchell, O. S., Dus, I., 2008. "Following the rules: Integrating asset allocation and annuitization in retirement portfolios". Insurance: Mathematics and Economics, vol.42, 396-408
    15. Horneff, W. J., Maurer, R. H., Stamos, M. Z., 2008. "Optimal gradual annutization: Quantifying the costs of switching to annuities". The Journal of Risk and Insurance, vol.75, 1019-1038.
    16. Huang, H. C., Cairns, A. J. G., 2006. "On the control of defined-benefit pension plans". Insurance: Mathematics and Econmics, vol. 38, 2006, 113-131.
    17. Kahneman, D., Tversky, A., 1979. "Prospect theory: an analysis of decision under risk". Econometrica, vol.47, 263-291.
    18. Orszag, J.M., 2000. "The annuities: the problem". In: Presented at the NAPF Annual Conference, May 11-12, 2000.
    19. Polyak, I., 2005. "New Advice to Retirees: Spend More at First, Cut Back Later". New York Times.
    20. Raymar, S.B. & M.J. Zwecher., 1997. "Monte Carlo Estimation of American Call Option on the Maximum of Several Assets". Journal of Derivatives, vol.5, 7-24
    21. Vigna, E., and Haberman, S., 2001. "Optimal Investment Strategy for defined contribution pension schemes". Insurance: Mathematics and Economics, vol.28, 233-262
    22. Winklevoss, H.E., 1982. "Plasm: pension liability and asset simulation model". Journal of Finance XXXVII (2) 585-594.
    23. 黃迪揚,2009年 "最適資產配置--動態規劃問題之數值解",國立政治大學風險管理與保險學系碩士論文。
    Description: 碩士
    國立政治大學
    風險管理與保險研究所
    97358023
    98
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0973580231
    Data Type: thesis
    Appears in Collections:[風險管理與保險學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    023101.pdf1810KbAdobe PDF2872View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback