政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/49679
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 113822/144841 (79%)
造访人次 : 51782463      在线人数 : 524
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/49679


    题名: 退休準備:最適配置與投資績效
    作者: 朱紓葶
    贡献者: 黃泓智
    朱紓葶
    关键词: 資產負債管理
    最適配置
    提撥率
    投資績效
    Asset liability matching
    Optimal allocation
    Contribution rate
    performance
    日期: 2008
    上传时间: 2010-12-08 16:33:07 (UTC+8)
    摘要: 本文延續Huang(2004, 2008)的研究,將單期與多期挹注資金的資產負債管理議題專化於DC確定提撥退休金制度上,其研究將問題化成二次函數,以一般化最小平方法(Generalized least square, GLS)求出具有唯一解特性的決策變數,利用的軟體求解速度相當快,能有效率地一次找出多項資產配置比例。
    本研究引入三種投資模型及其薪資模型,分別是Wilkie(1995)模型、MacDonald and Cairns(2007)模型、Huang and Cairns(2006)及Li(2009),以蒙地卡羅模型模擬出各投資標的年報酬率與薪資水準,並利用這些預期的模擬值在負債目標控制為隨機成長或固定比例成長下,找出最適投資比例、每期挹注的額度與提撥比例。
    最適配置為了解決下方風險(downside risk)問題,在允許限定風險容忍度下去最大化投資績效,本研究將目標函數加入衡量報酬項,依據員工希望的報酬,討論此項權重如何最適。亦加入交易成本項以反映實務情況,此投資總交易成本為權重的函數,於足夠支付交易成本的前提下找出權重最小值。
    In this study, the simulation of the return for each investment and wage pattern is via introduction of three investment model and their wage model, namely, Wilkie (1995) model, MacDonald and Cairns (2007) model, Huang and Cairns (2006) model and Li (2009), by using Monte Carlo simulation. The optimal contribution rate of investments, the amount of injection of each period, and income replacement ratio are determined when simulation is targeted in the balance control for the random growth or growth under a fixed rate of liabilities.
    The asset-liability management of single-period and multi-period injection of funds is specialized in the Defined contribution plan (DC), which is the extension of Huang’s (2004, 2008) study. Huang’s research transforming his argument into a quadratic function to generalized least squares method (GLS) having a unique solution to derive the decision-making variables. This method can efficiently find a set of allocation by software at a fairly rapid speed.
    The optimal allocation is to maximize investment performance subject to a limited risk had to tolerance for deal with downside risk. This study ameliorates the objective function by adding a constant term, which does not affect the investment decision-making variable. This new generalized least squares method use a constant represented as a weight, which is based on the desire asset of the employee. This study also takes transaction costs into consideration to reflect the practical situation. The total transaction costs are the function of the weight introduced into the new objective function. The minimum of weight can be reached when the goal is set to be sufficient to cover the transaction costs
    參考文獻: 1. Battocchio, P., Menoncin, F., (2004). Optimal pension management in a stochastic framework. Insurance: Mathematics and Economics 34, 79-95
    2. Bielecki, T.R., Jin, H., Pliska, S.R., Zhou, X.Y., (2005). Continuous-time mean–variance portfolio selection with bankruptcy prohibition. Mathematical Finance 15, 213–244.
    3. Blake, D., Cairns, A.J.G., Dowd, K., (2000). Optimal dynamic asset allocation for defined-contribution plans. The Pension Institute, London, Discussion Paper PI 2003.
    4. Boulier, J. F., Huang, S.J., Taillard, G., 2001. Optimal management under stochastic interest rates: the case of a protected defined contribution pension fund. Insurance: Mathematics and Economics 28, 173-189
    5. Campbell, J.Y., Viceira, L.M., (2002). Strategic Asset Allocation: Portfolio Choice for Long-term Investors. Oxford University Press, Oxford
    6. Chiu, M. C., Li, D., (2006). Asset and liability management under a continuous-time mean-variance optimization framework. Insurance: Mathematics and Economics 39, 330-355
    7. Cox , J.C. and C.F. Huang, (1989). Optimum Consumption and Portfolio Policies when Asset Prices Follow a Diffusion Process. Journal of Economic Theory 49, 33-83
    8. Cox , J.C. and C.F. Huang, (1991). A Variational Problem Arising in Financial Economics. Journal of Mathematical Economics 20, 465-487
    9. Cox J.C., J.E. Ingersoll and S.A. Ross, (1985). A Theory of the Term Structure of Interest Rates. Econometrica 53, 385-407
    10. Deelstra, G., Grasselli, M., Koehl, P.F., 2003. Optimal investment strategies in the presence of a minimum guarantee. Insurance: Mathematics and Economics 33, 189–207.
    11. Devolder, P., Bosch, P.M., Dominguez, F.I., (2003). Stochastic optimal control of annuity contracts. Insurance: Mathematics and Economic 33,227-238
    12. Emms, P., Haberman, S., (2007). Asymptotic and numerical analysis of the optimal investment strategy for an insurer. Insurance: Mathematics and Economics 40, 113-134.
    13. Franke, G., Peterson, S., Stapleton, R.C., (2001). Intertemporal portfolio behaviour when labor income is uncertain. In: Proceedings of the SIRIF Conference on Dynamic Portfolio Strategies, Edinburgh, May 2001.
    14. Haberman, S., Vigna, E., (2002). Optimal investment strategy and risk measures in defined contribution pension schemes. Insurance: Mathematics and Economics 41, 134-155
    15. Hainaut, D., and Devolder, P., (2007). Management of a Pension Fund under Mortality and Financial Risks. Insurance: Mathematics and Economics 41, 134-155.
    16. Hardy, M., (2003), Investment Guarantees, John Wiley & Sons, Inc.
    17. Huang H.C., Andrew J.G. Cairns , (2006). On the control of defined-benefit pension plans, , Insurance: Mathematics and Economics 38, 113–131
    18. Huang, H.C., (2000), Stochastic modeling and control of pension plans. Ph.D. Thesis, Heriot-Watt University.
    19. Huang, H.C., Hsieh, M-H, Liu, C-C, The Maturity Matching of Assets to Liabilities: A Generalized Least Square Formulation , Review of Securities of Futures Market 20(2), 2008 (TSSCI)
    20. Huang, H-C, (2004). Optimal Asset Allocation : A Multi-Period Matching of Assets to Liabilities in a Discrete Model, FAPARMO and RMST International Risk and Insurance Management Conference, Taipei, Taiwan
    21. J. Tobin, (1958). Liquidity Preference as Behavior Towards Risk, Review of Economic Studies25: pp. 65–86.
    22. Karoui , N. El., Jeanblanc-Picqué, M., (1998) . Optimization of consumption with labor income. Finance and Stochastics 2, p. 409-440
    23. Li, D., Ng, W.L., (2000). Optimal dynamic portfolio selection: multiperiod mean–variance formulation. Mathematical Finance 10, 387–406.
    24. Li, E.T., (2009), Optimal Fund Management under the Mean-Variance Approach. Ph.D. Thesis, National Chengchi University.
    25. MacDonald, B.-J. and Cairns, A.J.G., (2007), The impact of DC pension systems on population dynamic, North Americal Actuarial Journal, 11, 1: 1-32.
    26. Markowitz, and Harry, (1952). Portfolio Selection. Journal of Finance , pp.77-91.
    27. Markowitz, H.M. (1959). Portfolio Selection: Efficient Diversification of Investments. New York: John Wiley & Sons.
    28. Menoncin, F., Scaillet, O., (2006). Optimal asset management for pension funds. Managerial Finance 32, 347-374
    29. Merton, R., (1971), Optimum consumption and portfolio rules in a continuous-time model, Journal of Economic Theory 3, 373-413 (1971)
    30. Sharpe, W.F., Tint, L.G., (1990). Liabilities-a new approach. Journal of Portfolio Management 16, 5–10.
    31. Vasicek, O. E., (1977). An Equilibrium Characterization of the Term Structure. Journal of Financial Economics 5(2): 177-188
    32. Wilkie, A. D., (1986), A Stochastic Investment Model for Actuarial Use, T.F.A. 39,341-403.
    33. Wilkie, A. D., (1995), More on a Stochastic Asset Model for Actuarial Use, British Actuarial Journal, 1, 777-964.
    34. Wise, A.J., (1984a), A theoretical analysis of the matching of assets to liabilities.” Journal of Institute of Actuaries,111(Part II):375-402
    35. Wise, A.J., (1984b), The matching of assets to liabilities. Journal of the Institute of Actuaries,111(Part II):445-501
    36. Wise, A.J.,(1987a) Matching and Portfolio Selection: Part 1 Journal of Institute of Actuaries,114, 113-133 *
    37. Wise, A.J.,(1987b) Matching and Portfolio Selection: Part 2 Journal of Institute of Actuaries,114, 551-568
    38. Zhou, X.Y., Li, D., (2000). Continuous-time mean–variance portfolio selection: A stochastic LQ framework. Applied Mathematics and Optimization 42, 19–33.
    39. Zhu, S.S., Li, D., Wang, S.Y., (2004). Risk control over bankruptcy in dynamic portfolio selection: A generalized mean–variance formulation. IEEE Transactions on Automatic Control 49, 447–457.
    描述: 碩士
    國立政治大學
    風險管理與保險研究所
    96358019
    97
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0096358019
    数据类型: thesis
    显示于类别:[風險管理與保險學系] 學位論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    801901.pdf138KbAdobe PDF2554检视/开启
    801902.pdf260KbAdobe PDF21007检视/开启
    801903.pdf142KbAdobe PDF2631检视/开启
    801904.pdf143KbAdobe PDF2607检视/开启
    801905.pdf201KbAdobe PDF2924检视/开启
    801906.pdf519KbAdobe PDF21125检视/开启
    801907.pdf284KbAdobe PDF2728检视/开启
    801908.pdf811KbAdobe PDF2771检视/开启
    801909.pdf152KbAdobe PDF2683检视/开启
    801910.pdf130KbAdobe PDF2726检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈