English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113822/144841 (79%)
Visitors : 51831886      Online Users : 471
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 資訊學院 > 資訊科學系 > 學位論文 >  Item 140.119/49475
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/49475


    Title: 基於延展式區域三元化圖型之特徵描述子
    Feature descriptor based on extended local ternary pattern
    Authors: 楊梃榮
    Contributors: 廖文宏
    楊梃榮
    Keywords: 區域二元化圖型
    延展式區域三元化圖型
    材質辨識
    uniform pattern
    Date: 2009
    Issue Date: 2010-12-08 12:09:05 (UTC+8)
    Abstract: 特徵描述子為電腦視覺中相當重要的一部分,本論文基於知名的特徵描述子:區域二元化圖型的架構上,提出了新的特徵描述子,並將其命名為延展式區域三元化圖型。我們所提出的特徵描述子與區域二元化圖型相比,有著較強的抗噪能力而且保留了區域二元化圖型簡單的計算複雜度。本論文也探討了區域三元化圖型中是否存在著uniform pattern,基於區域二元化圖型中uniform pattern的定義,我們提出了屬於區域三元化圖型的uniform pattern,並在圖像實驗中驗證了其大量存在性。我們將區域三元化圖型應用於材質分析與人臉辨識中,實驗結果驗證了本論文所提出的特徵描述法在這些應用的優越性。
    Robust feature descriptor is essential in developing effective computer vision applications. In this thesis, we present an extension to the well-known local binary pattern (LBP) feature descriptor. The newly defined descriptor known as extended local ternary pattern (ELTP) exhibits better noise resistivity than the original LBP, while maintaining computational simplicity. We further investigate the presence of uniform patterns in ELTP. With a slight modification of the definition of uniformity, it is found experimentally that uniform ELTPs account for 80% of all patterns in texture images. The proposed ELTP and uniform ELTP are applied to object classification tasks, including texture analysis and face recognition. Experimental results validate the superiority of ELTP over conventional LBP approaches.
    Reference: [1] P. Viola and M. Jones, “Robust Real-Time Object Detection”. Proc. ICCV Second Int`l Workshop Statistical and Computational Theories of Vision Modelling, Learning, Computing, and Sampling, July 2001.
    [2] N. Dalal and B. Triggs, “Histograms of Oriented Gradients for Human Detection”, Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR `05), vol. 1, pp. 886-893, 2005.
    [3] R.Plamondon and S.N. Srihari, “On-Line and Off-Line Handwriting Recognition: A Comprehensive Survey”. IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 22, no. 1, pp. 63-84, Jan. 2000
    [4] Google goggles
    www.google.com/mobile/goggles
    [5] VOC 2009 Challenge Results:
    http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2009/results/index.html
    [6] D. Lowe, “Distinctive Image Features from Scale-Invariant Keypoints,” Int`l J. Computer Vision, vol. 2, no. 60, pp. 91-110, 2004.
    [7] B. S. Manjunath, J.-R. Ohm, V. V. Vasudevan, and A. Yamada ,“Color and texture descriptors,” IEEE Trans. Circuit Syst. Video Technol., vol. 11, pp. 703–715, June 2001
    [8] T. Ojala, M. Pietikainen, and T. Maenpaa, “Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 24, no. 7, pp. 971-987, July 2002.
    [9] Pontil and A. Verri, “Support Vector Machines for 3D Object Recognition”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 20(6), pp. 637-646, 1998.
    [10] A. Gionis, P. Indyk, and R. Motwani, “Similarity Search in High Dimensions via Hashing,” Proc. Very Large Data Base Conf. (VLDB `99), pp. 518–529, Sept. 1999.
    [11] T. Maenpaa, and M. Pictikainen, “Multi-scale binary patterns for texture analysis,” Springer Berlin / Heidelberg, 2003.
    [12] C. He, T. Ahonen and M. Pietikäinen, “A Bayesian Local Binary Pattern
    texture descriptor”,Proc. Int’l Conf. on Pattern Recognition, 2008.
    [13] X. Tan and B. Triggs. “Enhanced local texture feature sets for face recognition under difficult lighting conditions”. In Analysis and Modeling of Faces and Gestures, volume 4778 of LNCS, pages 168–182. Springer, 2007
    [14] Matthias Hein and Ulrike von Luxburg ,“Short Introduction to Spectral Clustering”, MLSS 2007
    [15] Ng, A., Jordan, M., and Weiss, Y. (2002). On spectral clustering: analysis and an algorithm. In T. Dietterich,S. Becker, and Z. Ghahramani (Eds.), Advances in Neural Information Processing Systems 14 (pp. 849 –856). MIT Press.
    [16] Brodatz database
    http://www.ux.uis.no/~tranden/
    [17] T. Ahonen, A. Hadid, and M. Pietikainen, “Face Description with Local Binary Patterns: Application to Face Recognition,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 28, no. 12, pp.2037-2041, Dec. 2006.
    [18] The Yale Face Database B
    http://cvc.yale.edu/projects/yalefacesB/yalefacesB.html
    [19] G. Zhao and M. Pietik¨ainen. Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE Trans. PAMI, 29(6):915–928, 2007.
    [20] G.Zhao and M. Pietikäinen, “Dynamic Texture Recognition Using Volume Local Binary Patterns”, Proc. ECCV 2006 Workshop on Dynamical Vision, Graz, Austria, 2006, accepted.
    [21] M. Heikkil¨a, M. Pietik¨ainen, and C. Schmid, “Description of interest regions with center-symmetric local binary patterns”,In Computer Vision, Graphics and Image Processing, 5th Indian Conference, pages 58–69, 2006.
    Description: 碩士
    國立政治大學
    資訊科學學系
    97753027
    98
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0097753027
    Data Type: thesis
    Appears in Collections:[資訊科學系] 學位論文

    Files in This Item:

    File SizeFormat
    302701.pdf3245KbAdobe PDF21973View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback