政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/49471
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113849/144871 (79%)
Visitors : 51883328      Online Users : 545
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/49471


    Title: 應用共變異矩陣描述子及半監督式學習於行人偵測
    Semi-supervised learning for pedestrian detection with covariance matrix feature
    Authors: 黃靈威
    Huang, Ling Wei
    Contributors: 廖文宏
    Liao, Wen Hung
    黃靈威
    Huang, Ling Wei
    Keywords: 半監督式學習
    支持向量機
    單純貝氏分類器
    共變異描述子
    Semi-supervised learning
    Support vector machine
    Naïve Bayes classifier
    Covariance descriptor
    Date: 2008
    Issue Date: 2010-12-08 12:06:40 (UTC+8)
    Abstract: 行人偵測為物件偵測領域中一個極具挑戰性的議題。其主要問題在於人體姿勢以及衣著服飾的多變性,加之以光源照射狀況迥異,大幅增加了辨識的困難度。吾人在本論文中提出利用共變異矩陣描述子及結合單純貝氏分類器與級聯支持向量機的線上學習辨識器,以增進行人辨識之正確率與重現率。
    實驗結果顯示,本論文所提出之線上學習策略在某些辨識狀況較差之資料集中能有效提升正確率與重現率達百分之十四。此外,即便於相同之初始訓練條件下,在USC Pedestrian Detection Test Set、 INRIA Person dataset 及 Penn-Fudan Database for Pedestrian Detection and Segmentation三個資料集中,本研究之正確率與重現率亦較HOG搭配AdaBoost之行人辨識方式為優。
    Pedestrian detection is an important yet challenging problem in object classification due to flexible body pose, loose clothing and ever-changing illumination. In this thesis, we employ covariance feature and propose an on-line learning classifier which combines naïve Bayes classifier and cascade support vector machine (SVM) to improve the precision and recall rate of pedestrian detection in a still image.

    Experimental results show that our on-line learning strategy can improve precision and recall rate about 14% in some difficult situations. Furthermore, even under the same initial training condition, our method outperforms HOG + AdaBoost in USC Pedestrian Detection Test Set, INRIA Person dataset and Penn-Fudan Database for Pedestrian Detection and Segmentation.
    Reference: [1] IBM Smart Surveillance System http://www.research.ibm.com/peoplevision/
    [2] オムロン株式会社公開特許公報【移動体検出方法及び装置並びに移動体認識方法及び装置並びに人間検出方法及び装置】日本国特許庁,1999
    [3] Oncel Tuzel, Fatih Porikli, and Peter Meer, “Human detection via classification on Riemannian manifolds”, IEEE Computer Society International Conference on Computer Vision and Pattern Recognition, pp. 1–8, 2007.
    [4] Arsigny Vincent, Fillard Pierre, Pennec Xavier, Ayache Nicholas, “Geometric means in a novel vector space structure on symmetric positive-definite matrices”, SIAM Journal on Matrix Analysis and Applications, Vol. 29(1), pp. 328–347, 2006.
    [5] Wolfgang Förstner, Boudewijn Moonen, “A metric for covariance matrices”, Technical report, Stuttgart University, Dept. of Geodesy and Geoinformatics, 1999.
    [6] Christopher Wren, Ali Azarbayejani, Trevor Darrell, Alex Pentland, “Pfinder: real-time tracking of the human body”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 19(7), pp. 780–785, 1997.
    [7] Csaba Beleznai , Bernhard Fruhstuck, Horst Bischof, “Human detection in groups using a fast mean shift procedure”, International Conference on Image Processing, Vol. 1, pp. 349–352, 2004.
    [8] Tetsuji Haga, Kazuhiko Sumi, Yasushi Yagi, “Human detection in outdoor scene using spatio-temporal motion analysis”, Proceedings of the 17th International Conference on Pattern Recognition, Vol. 4, pp. 331–334, 2004.
    [9] How-Lung Eng, Junxian Wang, Alvin H. Kam, Wei-Yun Yau, “A Bayesian framework for robust human detection and occlusion handling using human shape model”, Proceedings of the 17th International Conference on Pattern Recognition, pp. 257 – 260, 2004.
    [10] Constantine P. Papageorgiou, Michael Oren, Tomaso Poggio, “A general framework for object detection”, Proceedings of the 6th International Conference on Computer Vision, pp. 555–562,1998.
    [11] Paul Viola, Michael J. Jones, Daniel Snow, “Detecting pedestrians using patterns of motion and appearance”, Proceedings of the 9th International Conference on Computer Vision, Vol. 2, pp. 734–741, 2003.
    [12] Navneet Dalal, Bill Triggs, “Histograms of oriented gradients for human detection”, Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 886–893,2005.
    [13] Fatih Porikli, Oncel Tuzel, Peter Meer, “Covariance tracking using model update based on lie algebra” , Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,, pp. 728–735, 2006.
    [14] Shumeet Baluja, “Probabilistic modeling for face orientation discrimination: learning from labeled and unlabeled data”, Neural Information Processing Systems, pp. 854–860, 1998.
    [15] Kanal Paul Nigam, “Using unlabeled data to improve text classification (Technical Report CMU-CS-01-126)”, Carnegie Mellon University. Doctoral Dissertation, pp.27 2001.
    [16] Alex D. Holub, Pietro Perona, Max Welling, “Exploiting unlabeled data for hybrid object classification”, NIPS Workshop in Inter-Class Transfer, 2005.
    [17] Yuanqing Li, Cuntai Guan, Huiqi Li, Zhengyang Chin, “A self-training semi-supervised SVM algorithm and its application in an EEG-based brain computer interface speller system”, Pattern Recognition Letters, Vol. 29(9), pp. 1285-1294, 2008.
    [18] Raghav Subbarao, Peter Meer, “Nonlinear mean shift for clustering over analytic manifolds”, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1168–1175, 2006.
    [19] Fatih Porikli, Tekin Kocak, "Robust license plate detection using covariance descriptor in a neural network framework," IEEE International Conference on Advanced Video and Signal Based Surveillance, pp.107, 2006
    [20] Oncel Tuzel, Fatih Porikli, Peter Meer, “Region covariance: A fast descriptor for detection and classification”, Proceedings of the 9th European Conference on Computer Vision, Vol. 2, pp. 589–600, 2006.
    [21] Robert Gilmore, “Lie groups, Lie algebras, and some of their applications” , pp. 77 ,Dover, 2002
    [22] Xavier Pennec, Pierre Fillard, Nicholas Ayache, ”A Riemannian framework for tensor computing”, International Journal of Computer Vision, pp.41-66, 2006.
    [23] Jonathan H. Manton, “A centroid (Karcher mean) approach to the joint approximate diagonalisation problem: The real symmetric case”, Digital Signal Processing, Vol.16, pp. 468-478, 2006.
    [24] Chui-Yu Chiu, Yuan-Ting Huang. “Integration of support vector machine with naïve Bayesian classifier for spam classification”, Fuzzy Systems and Knowledge Discovery 4th International Conference, Vol. 1, pp. 24-27, 2007.
    [25] http://cbcl.mit.edu/software-datasets/PedestrianData.html
    [26] http://www.science.uva.nl/research/isla/downloads/pedestrians/index.html
    [27] http://pascal.inrialpes.fr/data/human/
    [28] http://iris.usc.edu/~bowu/DatasetWebpage/dataset.html
    [29] http://www.cis.upenn.edu/~jshi/ped_html/.
    [30] Ivan Laptev, "Improvements of object detection using boosted histograms", Proceedings of the 17th British Machine Vision Conference, pp. III:949-958, 2006. http://www.irisa.fr/vista/Equipe/People/Laptev/download.html
    [31] http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2006/index.html
    [32] Sakrapee Paisitkriangkrai, Chunhua Shen, Jian Zhang, ”An experimental evaluation of local features for pedestrian classification”, Digital Image Computing Techniques and Applications, 9th Biennial Conference of the Australian Pattern Recognition Society, pp.53-60, 2007
    Description: 碩士
    國立政治大學
    資訊科學學系
    96971006
    97
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0096971006
    Data Type: thesis
    Appears in Collections:[Department of Computer Science ] Theses

    Files in This Item:

    File Description SizeFormat
    100601.pdf94KbAdobe PDF2722View/Open
    100602.pdf104KbAdobe PDF2622View/Open
    100603.pdf107KbAdobe PDF2753View/Open
    100604.pdf152KbAdobe PDF2767View/Open
    100605.pdf173KbAdobe PDF21323View/Open
    100606.pdf288KbAdobe PDF21081View/Open
    100607.pdf201KbAdobe PDF21005View/Open
    100608.pdf1287KbAdobe PDF21251View/Open
    100609.pdf899KbAdobe PDF21164View/Open
    100610.pdf174KbAdobe PDF2832View/Open
    100611.pdf143KbAdobe PDF2759View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback