English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114205/145239 (79%)
Visitors : 52583574      Online Users : 1026
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 應用數學系 > 學位論文 >  Item 140.119/49458
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/49458


    Title: 半純函數體中的函數方程
    On Functional Equations in the Field of Meromorphic Functions
    Authors: 葉長青
    Yeh, Chang Ching
    Contributors: 陳天進
    Chen, Ten Ging
    葉長青
    Yeh, Chang Ching
    Keywords: 半純函數
    值分佈理論
    函數方程
    meromorphic function
    value distribution theory
    functional equation
    Date: 2009
    Issue Date: 2010-12-08 11:52:40 (UTC+8)
    Abstract: 在這篇論文中,我們將利用值分佈的理論來探討下列函數方程解的存在性與其性質:
    \\[\\sum_{j=1}^pa_j(z)f_j(z)^{k_j}=1,\\]
    其中 $a_1(z),\\cdots ,a_p(z)$ 為半純函數。對某些特殊方程,除了文獻裡已知的結果外,我們亦提供其它的例子。一般而言,我們探討解存在的必要條件。另外,我們證明了某一類半純函數之零點與極點之分佈的結果。
    In this thesis, we use the theory of value distribution to study the existence of solution of the following functional equation:
    \\[\\sum_{j=1}^pa_j(z)f_j(z)^{k_j}=1,\\]
    where $a_1(z),\\cdots ,a_p(z)$ are meromorphic functions. For some special case, new and old examples of the solutions are given. For the general case, a necessary condition for the existence of solution is considered. Moreover, we obtain a result on the distribution of zeros and poles of a class of meromorphic functions.
    Reference: [1] I. N. Baker, On a class of meromorphic functions, Proc. Amer. Math. Soc., 17 (1966), pp. 819–822.
    [2] C.-T. Chuang and C.-C. Yang, Fix-points and factorization of meromor- phic functions, World Scientific Publishing Co. Inc., Teaneck, NJ, 1990. Trans- lated from the Chinese.
    [3] M. L. Green, Some Picard theorems for holomorphic maps to algebraic vari- eties, Amer. J. Math., 97 (1975), pp. 43–75.
    [4] F. Gross, On the equation fn + gn = 1, Bull. Amer. Math. Soc., 72 (1966), pp. 86–88.
    [5] F. Gross, On the functional equation fn + gn = hn, Amer. Math. Monthly, 73 (1966), pp. 1093–1096.
    [6] F. Gross, Factorization of meromorphic functions, Mathematics Research Center, Naval Research Laboratory, Washington, D. C., 1972.
    [7] G. G. Gundersen, Meromorphic solutions of f6 + g6 + h6 ≡ 1, Analysis (Munich), 18 (1998), pp. 285–290.
    [8] G. G. Gundersen, Meromorphic solutions of f5 + g5 + h5 ≡ 1, Complex Variables Theory Appl., 43 (2001), pp. 293–298. The Chuang special issue.
    [9] W. Hayman, Warings Problem fu ̈r analytische Funktionen, Bayer. Akad. Wiss. Math.-Natur. Kl. Sitzungsber., (1984), pp. 1–13 (1985).
    [10] W. K. Hayman, Meromorphic functions, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964.
    [11] K. Ishizaki, A note on the functional equation fn+gn+hn = 1 and some com- plex differential equations, Comput. Methods Funct. Theory, 2 (2002), pp. 67– 85.
    [12] A. V. Jategaonkar, Elementary proof of a theorem of P. Montel on entire functions, J. London Math. Soc., 40 (1965), pp. 166–170.
    [13] I. Lahiri and K.-W. Yu, On generalized Fermat type functional equations, Comput. Methods Funct. Theory, 7 (2007), pp. 141–149.
    [14] D. H. Lehmer, On the diophantine equation x3 + y3 + z3 = 1, Journal of the London Mathematical Society, 31 (1956), pp. 275–280.
    [15] P. Li and C.-C. Yang, Some further results on the unique range sets of meromorphic functions, Kodai Math. J., 18 (1995), pp. 437–450.
    [16] H. Milloux, Les fonctions m ́eromorphes et leurs d ́eriv ́ees. Extensions d’un th ́eor"eme de M. R. Nevanlinna. Applications, Actualit ́es Sci. Ind., no. 888, Hermann et Cie., Paris, 1940.
    [17] P. Montel, Le ̧cons sur les familles normales de fonctions analytiques et leurs applications, Gauthiers-Villars, Paris, 1927.
    [18] R. Nevanlinna, Le th ́eor"eme de Picard-Borel et la th ́eorie des fonctions m ́eromorphes, Gauthiers-Villars, Paris, 1929.
    [19] D. J. Newman and M. Slater, Waring’s problem for the ring of polynomi- als, Journal of Number Theory, 11 (1979), pp. 477–487.
    [20] F. Rellich, Elliptische Funktionen und die ganzen L ̈osungen von y′′ = f(y) , Math, 47 (1940), pp. 153–160.
    p
    [21] N. Toda, On the functional equation
    Description: 碩士
    國立政治大學
    應用數學研究所
    97751003
    98
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0097751003
    Data Type: thesis
    Appears in Collections:[應用數學系] 學位論文

    Files in This Item:

    File SizeFormat
    100301.pdf658KbAdobe PDF2842View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback