English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114205/145239 (79%)
Visitors : 52589250      Online Users : 767
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 應用數學系 > 學位論文 >  Item 140.119/49161
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/49161


    Title: 在常微分方程下利用二次逼近法探討人口成長模型問題
    On the Parabola Approximation Method in Ordinary Differential Equation - Modelling Problem on The Population Growth
    Authors: 李育佐
    Li,Yu Tso
    Contributors: 李明融
    Li,Meng Rong
    李育佐
    Li,Yu Tso
    Keywords: 動態系統
    死亡率模型
    常微分方程
    偏微分方程
    數值分析
    Dynamic system
    mortality rate model
    ordinary differential equation
    partial differential equation
    numerical analysis
    Date: 2009
    Issue Date: 2010-12-08 02:00:24 (UTC+8)
    Abstract: 在人口統計領域中,早期習慣將人口變化視為時間的函數,企圖以Deterministic Function來刻劃,例如:1798年Malthus提出的Malthusian Growth Model ;1825年Gompertz提出的Gompertz Model以及1838年Verhulst主張以Logistic Function描述人口成長。而近年來則是傾向於逐項分析各種因素的隨機性模型,例如:1983年Holford加入世代的APC模型;1992年Lee 和Carter提出的Lee-Carter死亡率模型以及2003年Renshaw與Haberman提出改善Lee-Carter死亡率模型的Reduction Factor模型。

    人口變化主要分成自然增加與社會增加,而自然增加是為出生扣掉死亡,社會增加則為移入扣掉移出。首先,本文先不考慮遷移的部分,各別以出生與死亡人口的變化為研究對象,視其變化為一隨時間變動的動態系統,以常微分方程來刻劃。由台灣地區人口統計資料顯示,出生率或死亡率都有逐年下降的趨勢,而且隨著時間而變化加劇的傾向,使得以往使用的模型不易捕捉變化,因此我們提出「二次逼近法」,從出生、死亡人數對時間的變化率與曲度利用數值分析的方式來估計出生與死亡數,進而從中找出在此動態系統背後隱藏的規則。而後再同時考慮其他各種變項,以偏微分方程來刻劃,最後即可建立台灣地區人口變化模型。
    In early population statistics, the population changes were regarded as a function of time so that people tended to
    describe the variations by deterministic functions. For instance, Malthus proposed the Malthusian Growth Model in 1798; Gompertz presented Gompertz Model in 1825; Verhulst advocated using logistic function to describe an increase in population. In recent years, people tend to use the stochastic forecast method to analyse every factor term by term. For instance, the Age-Period-Cohort (APC) Model which was proposed by Holford in 1983; Lee and Carter proposed the Lee-Carter Mortality Model in 2003; and Renshaw and Haberman proposed the Reduction Factor Model in 2003 that improve the Lee-Carter Mortality Model.

    The population changes equal to nature and social increase, where the nature increase is the difference between birth and death population, and the social increase is the difference between immigrants and emigrants. First, we focus on natural increase rather than social increase. Moreover, we use ordinary differential equation to decribe the variation as a dynamic system over time. From the data obtained from the Ministry of Interior Taiwan, we know that the fertility and mortality has been decreasing, and the change is getting more violent year by year. Under the consideration that previous models are not able to accurately present the changes of birth and death, we proposed "second-order (or parabola) approximation method." From the variation rates and curvatures of birth and death population, we estimated the population size. Furthermore, we want to find the rule in the dynamic system. Later we will consider other factors simultaneously, and describe them by partial differential equation. Finally, the population model is constructed.
    Abstract ii
    中文摘要 iii
    1 Introduction. . . . . . . . . . . . . . . . . . . . . . .1
    2 Models. . . . . . . . . . . . . . . . . . . . . . . . .4
    2.1 Malthusian Grown Model . . . . . . . . . . . . . . . . 4
    2.2 Logistic Model . . . . . . . . . . . . . . . . . . 4
    2.3 Gompertz Model . . . . . . . . . . . . . . . . . . . . 5
    2.4 Age-Period-Cohort (APC) Model . . . . . . . . . . . . 6
    2.5 Lee-Carter Model . . . . . . . . . . . . . . . . . . . 7
    3 Parabola Approximation Method in ODE . . . . . . . . . .8
    4 Empirical Results. . . . . . . . . . . . . . . . . . .16
    4.1 The Empirical Results in Taiwan . . . . . . . . . . . 16
    5 Discussion And Suggestion . . . . . . . . . . . . . . 22
    References. . . . . . . . . . . . . . . . . . . 24
    Appendix. . . . . . . . . . . . . . . . . . . 28
    PART 1 . . . . . . . . . . . . . . . . . . . 28
    PART 2 . . . . . . . . . . . . . . . . . . . . . . 44
    Reference: 中華民國內政部統計資訊網, http://www.moi.gov.tw/stat/
    內政部(1949~2005), 中華民國台閩地區人口統計,內政部編印
    何正羽 (2006), 高齡人口 Gompertz 死亡率推估模型的建構與應用, 東吳大學商用數學系碩士論文
    王郁萍與余清祥(2007), 台灣地區死亡率APC模型之研究, 政治大學統計研究所碩士論文
    王佩文(2007), 死亡率模型之改善,以Lee-Carter與Reduction Factor模型為例, 政治大學統風險管理與保險研究所碩士論文
    郭孟坤與余清祥(2008), 電腦模擬與隨機方法在人口推估上的應用, 人口學刊第36期, 67-98頁
    李芯柔(2007), 電腦模擬在生育、死亡、遷移及人口推估之應用, 政治大學統計研究所碩士論文
    許鳴遠(2006), 台灣人口死亡率模型之探討 Reduction Factor模型的實證研究, 政治大學風險管理與保險研究所碩士論文
    陳英傑(1986), 臺灣地區人口死亡率模型與出生數模型之研究, 淡江大學管理科學研究所碩士論文
    李玢(2009), 動態系統與生育率及死亡率的估計, 政治大學統計研究所碩士論文
    藍銘偉與余清祥(2003), 台灣、美國與瑞典生育率模型之研究, 人口學刊第27 期, 105-131頁
    邱惟俊(1999), 臺灣地區總人口數之預測分析, 政治大學統計研究所碩士論文
    賴思帆(2005), 生育率模型與台灣各縣市生育率之實證研究, 政治大學統計研究所碩士論文
    賴思帆與余清祥(2006), 台灣與各國生育率模型之實證與模擬比較, 人口學刊第33期, 33-59頁
    柯欣吟(2009), 臺灣高齡人口死亡率模式, 國立政治大學社會學研究所碩士論文
    黃意萍與余清祥(2002), 台灣地區生育率推估方法的研究, 人口學刊第25期, 145-171頁
    歐長潤(2008), APC模型估計方法的模擬與實證研究, 政治大學統計研究所碩士論文
    蔡政憲(2008), 應用Nelson-Siegel系列模型預測死亡率-以日本為例, 政治大學風險管理與保險研究所碩士論文
    曾奕翔(2002), 台灣地區死亡率推估的實證方法之研究與相關年金問題之探討, 政治大學統計研究所碩士論文
    王德睦與劉一龍(2008), 台灣總生育率再分析, 人口學刊第36期, 37-65頁
    Lawrence R. Carter and Ronald D. Lee(1992), Modeling and forecasting US sex differentials in mortality, International Journal of Forecasting, Volume 8, Issue 3, Pages 393-411.
    Lawrence R. Carter and Ronald D. Lee(1992), Modeling and forecasting U.S. mortality-Comment/Reply, Journal of the American Statistical Association, 87(419), 659.
    Koissi, Marie-Claire; Shapiro, Arnold F.; Hognas, Goran(2006), Evaluating and extending the Lee–Carter model for mortality forecasting: Bootstrap confidence interval,Insurance Mathematics and Economics, Volume: 38, Issue: 1,pp. 1-20 .
    Dimitris N. Politis and Joseph P. Romano(1994), The Stationary Bootstrap, Journal of the American Statistical Association, Vol. 89, No. 428.
    Gompertz, B.(1825), On the Nature of the Function Expressive of the Law of Human Mortality, and on a New Mode of Determining the Value of Life Contingencies, Philosophical Transactions of the Royal Society of London, Vol. 115, pp. 513-585.
    Frank T. Denton, Christine H. Feaver(2005), Byron G. Spencer.Time series analysis and stochastic forecasting: An econometric study of mortality and life expectancy,Journal of Population Economics. Heidelberg, Vol. 18, Iss. 2, p. 203.
    John Bongaarts and Griffith Feeney(1998), On the Quantum and Tempo of Fertility ,Population and Development Review, Vol. 24, No. 2, pp. 271-291
    Yue C. J.(2002), Oldest-Old Mortality Rates and the Gompertz Law: A Theoretical and Empirical Study Based on Four Counties, Journal of Population Studies, Vol. 24, pp. 33-57
    Huang H. , Yue C. J. and Yang S. S.(2008), An Empirical Study of Mortality Models in Taiwan, APRIA, Vol. 3(1), pp. 150-164
    Malthus T. R.(1826), An Essay on the Principle of population, Cambridge University Press
    Holford T. R.(1983), The Estimation of Age, Period and Cohort Effects for Vital Rates, Biometrics, Vol. 39, No. 2, pp. 311-324
    Li, J.S.H., A.C.Y. Ng, and W.S. Chan(2009), Modeling old-age mortality risk for the populations of Australia and New Zealand: an extreme value approach, http://mssanz.org.au/modsim09
    Renshaw A.E. and Haberman S. (2003), On the forecasting of mortality reduction factors, Insurance: Mathematics and Economics,Vol. 32, pp. 379–401
    Renshaw A.E. and Haberman S. (2003), Lee–Carter mortality forecasting with age-specific enhancement, Insurance: Mathematics and Economics,Vol. 33, pp. 255–272
    Shieh Tzong-Hann and Li Meng-Rong (2009), Numeric treatment of contact discontinuity with multi-gases, Journal of Computational and Applied Mathematics,Vol. 230, pp. 656–673
    Meng-Rong Li; Tzong-Hann Shieh; Jack C. Yue; Pin Lee; Yu-Tso Li, Parabola Method in Ordinary Differential Equation, 2011 to appear in Journal of Taiwanese Mathematics.
    Description: 碩士
    國立政治大學
    應用數學研究所
    97751010
    98
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0097751010
    Data Type: thesis
    Appears in Collections:[應用數學系] 學位論文

    Files in This Item:

    File SizeFormat
    index.html0KbHTML2521View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback