政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/4007
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113656/144643 (79%)
Visitors : 51718496      Online Users : 602
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/4007


    Title: 使用TP, PT 合成法內基本結構之探索及應用
    Other Titles: Exploration of Fundamental Structures for Synthesized Nets Using TP- and PT-Generations and Its Applications
    Authors: 趙玉
    Keywords: 合成;TP生成;PT生成;派曲網;同步選擇網路;自由選擇網路 net,Free choice net
    Synthesis;TP generation;PT generation;Petri net;Synchronized choice net;Free choice net
    Date: 1999
    Issue Date: 2007-04-18 16:40:24 (UTC+8)
    Publisher: 臺北市:國立政治大學資訊管理學系
    Abstract: 針織技術是簡單、有力的,而且可以像CAD工具一樣自動化。它合成出一個PN的新階層(比FC net更大),也就是所謂的Synchronized Choice(sc) nets。 證明活性,也就是解決一般PN的通達性問題(Reachability)是困難的問題而且是PSPACE hard。 SC是有趣的,因為如果一個設計的PN不是SC,那麼它很有可能會出現死結或無界限(Unbound)的設計錯誤。同樣地,它的分析需要多項式時間(Polynomial time)。初步研究指出,在發現最簡單且基礎的死結結構上有重大結果,且同時考量了結構及標記(Marking)。 吾人曾發展出產生TP及PT新路徑之合成法則;可處理資源共享。但法則太多以至於使用者難以掌握且難以加以併入目前之電腦輔助工具。尋找死結之簡單結構及條件可使得其分析只須多項式時間。吾人可繼作彈性製造之排程。 本提案延續及引用SC之研究,將其推廣至由 TP及PT合成法則所形成之新類別網路計畫之工作如下:(1)找出既能分類且可區分之簡單區 域結構。(2)重審目前之TP及PT合成法則,研究如何加以簡化。(3)研究(1)內所發現結構之各種狀況以A.簡化TP及PT合成法則;B.加強法則使能合成所有良性之前述新類別網路;C.找尋死結和非單調性標記的基本條件;D.研究由 TP及PT合成法則所形成之新類別網路之性質如 reachability。
    The knitting technique is simple, powerful and can be automated as a CAD tool. It synthesizes a new class (larger than Free-Choice FC nets) of PNs called Synchronized Choice (SC) nets. Proving liveness or equivalently, solving reachability problem for general PNs is a difficult problem and is PSPACE hard problem in the net model. One is interested in finding the largest class of nets that can be analyzed in polynomial time. SC is interesting because if a designed PN is not an SC, then most likely it suffers from design errors of deadlocks or unbounded. Also its analysis takes polynomial time. This lead to significant results of finding the most simple and fundamental structure for deadlocks considering both structure and marking. Previously, we proposed synthesis rules for TP- and PT-path generations that can deal with resource sharing. But there are too many rules for a designer to grasp and for automation as a CAD tool [9]. Finding out simple structures and conditions for deadlocks are important because we then can analyze the net in polynomial time and we can proceed to perform schedulings for a FMS. This proposal aims to extend the same approach for SCs to nets synthesized using TP- and PT-generations. We (1) Search local simple structures that both classify and characterize the nets. (2) Review current rules for TP- and PT-generations and study how to simplify them. (3) Study all possible cases of the above structures to A. Simplify the rules, B. Enhance the rules to synthesize all well-behaved nets in the class, C. Find conditions for deadlocks and irreversibility. Study its properties such as reachability.
    Description: 核定金額:265000元
    Data Type: report
    Appears in Collections:[Department of MIS] NSC Projects

    Files in This Item:

    File Description SizeFormat
    882213E004001.pdf50KbAdobe PDF21227View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback