English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114012/145044 (79%)
Visitors : 52086810      Online Users : 559
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 應用數學系 > 學位論文 >  Item 140.119/37088
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/37088


    Title: 有限離散條件分配族相容性之研究
    A study on the compatibility of the family of finite discrete conditional distributions.
    Authors: 李瑋珊
    Li, Wei-Shan
    Contributors: 宋傳欽
    Song, Chuan-Cin
    李瑋珊
    Li, Wei-Shan
    Keywords: 相容
    比值矩陣
    秩1正擴張矩陣
    不可約化塊狀對角矩陣
    二分圖
    圖形法
    修正比值矩陣法
    廣義秩1正擴張矩陣
    compatibility
    ratio matrix
    ROPE matrix
    IBD matrix
    bipartite graph
    Graphical Method
    Revised Ratio Matrix Method
    GROPE matrix
    Date: 2008
    Issue Date: 2009-09-19 12:07:30 (UTC+8)
    Abstract: 中文摘要

    有限離散條件分配相容性問題可依相容性檢驗、唯一性檢驗以及找出所有的聯合機率分配三層次來討論。目前的文獻資料有幾種研究方法,本文僅分析、比較其中的比值矩陣法和圖形法。

    二維中,我們發現簡化二分圖的分支與IBD矩陣中的對角塊狀矩陣有密切的對應關係。在檢驗相容性時,圖形法只需檢驗簡化二分圖中的每個分支,正如同比值矩陣法只需檢驗IBD矩陣中的每一個對角塊狀矩陣即可。在檢驗唯一性時,圖形法只需檢驗簡化二分圖中的分支數是否唯一,正如同比值矩陣法只需檢驗IBD矩陣中的對角塊狀數是否唯一即可。在求所有的聯合機率分配時,運用比值矩陣法可推算出所有的聯合機率分配,但是圖形法則無法求出。

    三維中,本文提出了修正比值矩陣法,將比值數組按照某種索引方式在平面上有規則地呈現,可降低所需處理矩陣的大小。此外,我們也發現修正比值矩陣中的橫直縱迴路和簡化二分圖中的迴路有對應的關係,因此可觀察出兩種方法所獲致某些結論的關聯性。在檢驗唯一性時,圖形法是檢驗簡化二分圖中的分支數是否唯一,而修正比值矩陣法是檢驗兩個修正比值矩陣是否分別有唯一的GROPE矩陣。修正比值矩陣法可推算出所有的聯合機率分配。

    圖形法可用於任何維度中,修正比值矩陣法也可推廣到任何維度中,但在應用上,修正比值矩陣法比圖形法較為可行。
    The issue of the compatibility of finite discrete conditional distributions could be discussed hierarchically according to the compatibility, the uniqueness, and finding all possible joint probability distributions. There are several published methods, but only the Ratio Matrix Method and the Graphical Method are analyzed and compared in this thesis.

    In bivariate case, a close correspondence between the components of the reduced bipartite graph and the diagonal block matrices of the IBD matrix can be found. When we examine the compatibility, just as simply each diagonal block matrix of the IBD matrix needs to be examined using the Ratio Matrix Method, so does each component of the reduced bipartite graph using the Graphical Method. When we examine the uniqueness, just as whether the number of the diagonal blocks of the IBD matrix is unique needs to be examined, so does the number of the components of the reduced bipartite graph. The Ratio Matrix Method can provide all possible joint probability distributions, but the Graphical Method cannot.

    In trivariate case, this thesis proposes a Revised Ratio Matrix Method, in which we can present the ratio array regularly in the plane according to the index and reduce the corresponding matrix size. It is also found that each circuit in the revised ratio matrix corresponds to a circuit in the reduced bipartite graph. Therefore, the relation between the results of the two methods can be observed. When we examine the uniqueness with the Graphical Method, we examine whether the number of the components in the reduced bipartite graph is unique. But with the Revised Ratio Matrix Method, we examine whether each revised ratio matrix has a unique GROPE matrix. All possible joint probability distributions can be derived through the Revised Ratio Matrix Method.

    The Graphical Method can be applied to the higher dimensional cases, so can the Revised Ratio Matrix Method. But the Revised Ratio Matrix Method is more feasible than the Graphical Method in application.
    Reference: \\bibitem{Arnold1989}Arnold, B. C. and Press, S. J. (1989), Compatible conditional distributions. \\textit{J. Amer. Statist. Assoc.}, \\textbf{84}, 152-156.
    \\bibitem{Arnold2004}Arnold, B. C., Castillo,E., and Sarabia, J. M. (2004), Compatibility of partial or complete conditional probability specifications. \\textit{J. Statist. Plann. Inference}, \\textbf{123}, 133-159.
    \\bibitem{Kuo2008}Kuo, K. L. (2008), \\textit{New tools for studying the Ferguson-Dirichlet process and compatibility of a family of conditionals.},政治大學應用數學系博士論文。
    \\bibitem{Minc1988}Minc, H. (1988), \\textit{Nonnegative Matrices}. New York: Wiley.
    \\bibitem{Perez-Villalta2000}Perez-Villalta, R. (2000), Variables finitas condicionalmente especificadas. \\textit{Questioo}, \\textbf{24}, 425-448.
    \\bibitem{Rossman1995}Rossman, Allan J. and Short, Thomas H. (1995), Conditional probability and education reform:Are they compatible? \\textit{Journal of Statistics Education}, \\textbf{v.3, n.2}.
    \\bibitem{Slavkovic2004}Slavkovic, A. B. (2004), \\textit{Statistical Disclosure Limitation Beyond the Margins.} Ph.D. Thesis, Department of Statistics, Carnegie Mellon University, 2004.
    \\bibitem{Slavkovic2006}Slavkovic, A. B. and Sullivant, S. (2006), The space of compatible full conditionals is a unimodular toric variety.\\textit{Journal of Symbolic Computation}, \\textbf{41}(2), 196-209.
    \\bibitem{Song2009}Song, C. C., Li, L. A., Chen, C. H., Jiang, T. J., and Kuo, K. L. (2009), Compatibility of finite discrete conditional distributions.\\textit{Statistica Sinica.}(Accepted) To appear.
    \\bibitem{Tucker2002}Tucker, A. (2002), \\textit{Applied combinatorics}. John Wiley \\& Sons.
    \\bibitem{周寅亮1998}周寅亮(1998),離散數學,中央圖書出版社,台北市。
    \\bibitem{林福來}林福來(譯)(1998),離散數學初步,九章出版社,台北市。
    \\bibitem{程代展2007}程代展、齊洪勝(2007),矩陣的半張量積:理論與應用,科學出版社,北京市。
    \\bibitem{林義雄1987}林義雄(1987),初等線性代數(第二冊),九章出版社,台北市。
    Description: 碩士
    國立政治大學
    應用數學研究所
    94751006
    97
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0094751006
    Data Type: thesis
    Appears in Collections:[應用數學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    100601.pdf92KbAdobe PDF2768View/Open
    100602.pdf116KbAdobe PDF2824View/Open
    100603.pdf534KbAdobe PDF2783View/Open
    100604.pdf480KbAdobe PDF2652View/Open
    100605.pdf537KbAdobe PDF2829View/Open
    100606.pdf3102KbAdobe PDF21014View/Open
    100607.pdf21159KbAdobe PDF2704View/Open
    100608.pdf603KbAdobe PDF2692View/Open
    100609.pdf950KbAdobe PDF2826View/Open
    100610.pdf397KbAdobe PDF21705View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback