政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/36761
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113822/144841 (79%)
Visitors : 51777402      Online Users : 491
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大典藏 > College of Commerce > Department of MIS > Theses >  Item 140.119/36761
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/36761


    Title: 利用類神經網路估算國內電子股投資風險值績效
    Authors: 高世儒
    Contributors: 蔡瑞煌
    林修葳

    高世儒
    Keywords: 類神經網路
    風險值
    Artificial Neural Network
    Value at Risk
    Date: 1998
    Issue Date: 2009-09-18 19:32:06 (UTC+8)
    Abstract: 本研究首次提出以未來臨界報酬率為輸出變數,利用兩種類神經網路(Artificial Neural Network)估算國內電子股代表樣本報酬率的風險值(Value at Risk , VaR)。在研究設計上考慮到使用不同期長來計算自變項所帶來的影響而產生兩種預測方法。本研究並以回顧檢定(Backtesting )檢討藉由臨界值報酬率作為類神經估計法與一般以變異數/共變數法或蒙地卡羅模擬法所估算出VaR的差異。
    綜合本研究,在學術及實務上的貢獻有下列四點:
    1. 設計臨界報酬率作為估算VaR的方式,可以避免以往計算VaR時,報酬率分配主觀給定的問題。
    2. 相關研究過去並未同時涉及類神經網路與VaR,而本研究首次應用類神經網路估算VaR。
    3. 本文亦提出以多種不同的基本變數衡量期長來估算VaR,或可幫助界定差異的研究設計。
    4. 本研究使用類神經網路可能的一項限制是報酬率臨界值 的設計方式;而類神經網路可能勝出其它預測工具的理由可能是 (1)學習到隱性因子的特性 (2)預測方式為非線性 (3)毋須依賴常態或特定分配之假設。以往類神經網路研究在賽馬決定各工具優劣時,較少探究類神經勝出或落敗的理由,而這卻是本研究設計的焦點。
    Reference: 一、中文部份:
    1. 蔡瑞煌 (1995),類神經網路概論,台北:三民書局。
    2. 蔡瑞煌、邱奕德、劉曦敏,「應用理解神經網路系統於臺灣股價指數之分
    析及預測」,經濟研究,三十四卷,二期,民國85年7月,頁171-200。
    二、英文部份:
    1. Ahn, Dong-Hyun; Boudoukh, Jacob; Richardson, Matthew and
    Whitelaw, Robert F,” Optimal Risk Management Using
    Options,” Journal of Finance, Feb,1999,pp. 359-375.
    2. Alexander C.O. and C.T. Leigh. “On the Covariance Matrices
    Used In Value at Risk Models,” The Journal of Jerivatives,
    Spring, 1997, pp. 50-62.
    3. Beder, T. S., “VAR: Seductive but Dangerous,” Financial
    Analysts Journal, September/ October 1995, pp. 12-24.
    4. Chiou, Y., Liu, S. and Tsaih, R., “Applying Reasoning
    Neural Networks to the Analysis and Forecast of Taiwan`s
    Stock Index Variation,” Taipei Economics Inquiry , 1996,
    pp.171-200.
    5. David J. Ginzl., “How to Establish a Comprehensive Risk-
    Management Program,” Commercial Lending Review, Summer
    1997, pp. 31-35.
    6. Duffie, D., and J. Pan “An Overview of Value at Risk,” The
    Journal of Derivatives, Spring, 1997, pp. 7-49.
    7. Hull, J., and A. White. “Value at Risk When Daily Changes
    in Market Variables Are Not Normally Distributed,” The
    Journal of Derivatives, Spring, 1998, pp. 9-19.
    8. Jorion, P., “Risk: Measuring the Risk in Value at Risk,”
    Financial Analysts Journal, November/December 1996, pp. 47-
    56.
    9. Jorion, P., (1997) Value at Risk: The New Benchmark for
    Controlling Market Risk Professional Publication, U.S.A :
    Iriwin
    10. Paul H. Kupiec, “Techniques for Verifying the Accuracy of
    Risk Measurement Models,” The Journal of Derivatives
    Winter, winter 1995,pp. 73-85.
    11. Tsaih, R., “Reasoning Network Networks,” In Ellacott, S.,
    J. Mason and Anderson, I. (Eds.), Mathematics of Neural
    Networks: Models, Algorithms and Applications, Kluwer
    Academic Publishers, London, 1997,pp. 366-371.
    12. Tsaih,R.,Chen, W. and Lin,Y. , “Application of Reasoning
    Neural Networks for Financial Swaps,” Journal of
    Computational Intelligence in Finance, May 1998, pp.27-37.
    13. Tsaih,R.,Hsu,Y., and Lai,C., “Forecasting S&P500 Stock
    Index Futures with the Hybrid AI System,” Decision Support
    Systems, Jun 1998,pp.161-174.
    14. Venkat, Shyam; Malhotra, Satyan. , “Establishing a Value-
    at-Risk Framework,” Mortgage Banking, Aug 1998,pp. 83-86.
    15. Venkataraman, “Value at Risk for Normal Distribution―the
    Use of Quasi Bayesian Estimation Techniques,” Economic
    Perspectives,1997,pp.12
    Description: 碩士
    國立政治大學
    資訊管理研究所
    86356006
    87
    Source URI: http://thesis.lib.nccu.edu.tw/record/#B2002001641
    Data Type: thesis
    Appears in Collections:[Department of MIS] Theses

    Files in This Item:

    File SizeFormat
    index.html0KbHTML2508View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback