English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113656/144643 (79%)
Visitors : 51736311      Online Users : 627
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/36729


    Title: 考量保險業加入國外投資之最適組合
    Incorporating Foreign Equities in Optimal Portfolio Selection for Insurers and Investors with Significant Background Risks
    Authors: 洪莉娟
    Li-Chuan Hung
    Contributors: 張士傑
    Shih-Chieh Chang
    洪莉娟
    Li-Chuan Hung
    Keywords: 背景風險
    國外投資
    隨機控制模型
    動態規劃
    逼近馬可夫理論
    stochastic control
    dynamic programming
    Markov chain approximation
    country risk
    surplus
    Date: 2002
    Issue Date: 2009-09-18 19:23:40 (UTC+8)
    Abstract: 本研究探討面臨顯著背景風險(諸如核保等風險)金融機構之投資策略,考量加入國外投資風險下,該金融機構如何決定最適動態資產配置策略,為充分反映市場風險、匯率風險及核保風險,本研究以隨機方程式描述資產價值及核保經驗之變動,並以假想之人壽保險公司作為討論對象,預估未來現金流量並建構公司財務資訊相關之隨機模型,給定最低資本限制下,於指定投資期限內達到全期淨值(盈餘)最佳效用值為目標。本文依照給定之背景風險建構隨機控制模型,利用動態規劃法求出最適資產配置。結果顯示最適投資組合將由三項要素組成:1.極小化盈餘變化之變異數之部位;2.類似於短期投資組合策略之避險部位;以及3.用以規避背景風險之避險部位。因為模型複雜性之限制,以逼近馬可夫理論之數值方法計算最適投資策略。
    This paper analyzes the optimal asset allocation for insurers and investors who are required to cope with significant background risks due to underwriting uncertainties and interest rate risks among a set of stochastic investment opportunities. In order to hedge properly the country risks due to local volatile financial market, the foreign investment opportunities are included in the optimal portfolio decision. In this study, detailed formulation using the projected cash flows of a hypothetical life insurance company and its related stochastic phenomena are constructed. The insurers are assumed to maximize the expected discounted utility of their surplus over the investment horizon under the minimal capital requirement. Our problem is formulated as a stochastic control framework. According to the optimal solution, the optimal portfolio can be characterized by three components: a hedging component minimizing the variance of the change in surplus, a hedging component familiar to myopic portfolio rule, and a risk hedging component against the background risks. Since the explicit solutions cannot be achieved due to model complexity, the Markov chain approximation methods are employed to obtain the optimal control solutions in our numerical illustration.
    Reference: Boyle, P. and Yang, H., 1997, Asset Allocation with Time Variation in Expected Returns, Insurance: Mathematics and Economics 21, 201-218.
    Björk, T., Arbitrage Theory in Continuous Time, Oxford University Press, 1998.
    Brennan, M. J. and Schwartz, E. S., 1982, An Equilibrium Model of Bond Pricing and a Test of Market Efficiency, Journal of Financial and Quantitative Analysis 17, 301-329.
    Brennan, M. J., Schwartz, E. S. and Lagnado, R., 1997, Strategic Asset Allocation, Journal of Economics, Dynamics and Control 21, 1377-1403.
    Brennan, M. J. and Schwartz, E. S., 1998, the Use of Treasury Bill Futures in Strategic Asset Allocation Programs. In Worldwide Asset and Liability Modeling, (J.M. Mulvey and W.T. Ziemba, Eds.), Cambridge, England: Cambridge University Press, 205-230.
    Brennan, M. J., 1998, the Role of Learning in Dynamic Portfolio Decisions, European Finance Review 1, 295-306.
    Brennan, M. J. and Xia, Y., 2000, Stochastic Interest Rates and the Bond-Stock Mix, European Finance Review 4, 197-210.
    Campbell, J. Y. and Viceira, L. M., 1999, Consumption and Portfolio Decisions when Expected Returns are Time Varying, Quarterly Journal of Economics 114, 433-495.
    Campbell, J. Y. and Viceira, L. M., 2001, Who Should Buy Long-Term Bonds, American Economic Review 91, 99-127.
    Campbell, J. Y. and Viceira, L. M., Strategic Asset Allocation: Portfolio Choice for Long-Term Investors, Oxford University Press, 2002.
    Canner, N., Mankiw, N. G., Weil, D. N., 1997, an Asset Allocation Puzzle, American Economic Review 87, 181-191.
    Duffie, D., Dynamic Asset Pricing Theory, Second Edition, Princeton University Press, 1996.
    Karatzas, I., Lehoczky, J. P., Sethi, S. P. and Shreve, S. E., 1986, Explicit Solutions of a 30 General Consumption Investment Problem, Mathematics of Operations Research 11, 261--294.
    Kim, T., and Omberg, E., 1996, Dynamic Nonmyopic Portfolio Behavior, Review of Financial Studies 9, 141-161.
    Kushner, H. J. and Dupuis, P., Numerical Methods for Stochastic Control Problems in Continuous Time, Springer, New York and Berlin, 1992.
    Liu, J. and Pan, J., 2003, Dynamic Derivative Strategies, Journal of Financial Economics, forthcoming.
    Menoncin, F., 2002, Optimal Portfolio and Background Risk: An Exact and An Approximated Solution, Insurance: Mathematics and Economics 31, 249-265.
    Merton, R. C., 1969, Lifetime Portfolio Selection under Uncertainty: The Continuous Time Case, Review of Economics and Statistics 51, 247-257.
    Merton, R. C., 1971, Optimum Consumption and Portfolio Rules in a Continuous Time Model, Journal of Economic Theory 3, 373-413.
    Merton, R. C., 1973, An Intertemporal Capital Asset Pricing Model, Econometrica 41, 867-888.
    Merton, R. C., Continuous Time Finance, Basil Blackwell, Cambridge, MA, 1990.
    Samuelson, P., 1969, Lifetime Portfolio Selection by Dynamic Stochastic Programming, Review of Economics and Statistics, 239-246.
    Sorensen, C., 1999, Dynamic Asset Allocation and Fixed Income Management, Journal of Financial and Quantitative Analysis 34, 513-531.
    Vasicek, O., 1977, An equilibrium characterization of the term structure, Journal of Financial Economics 5, 177-188.
    Wachter, J. A., 2002, Portfolio and Consumption Decisions under Mean-Reverting Returns: An Exact Solution for Complete Markets, Journal of Financial and Quantitative Analysis 37, 63-91.
    Description: 碩士
    國立政治大學
    風險管理與保險研究所
    90358005
    91
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0090358005
    Data Type: thesis
    Appears in Collections:[風險管理與保險學系] 學位論文

    Files in This Item:

    There are no files associated with this item.



    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback