English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114205/145239 (79%)
Visitors : 52553860      Online Users : 622
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 財務管理學系 > 學位論文 >  Item 140.119/36691
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/36691


    Title: 交易量對於隱含波動度預測誤差之對偶效果-Panel Data的分析
    The Dual Effect of Volume and Volatility Forecasting Error-Panel Data analysis
    Authors: 李政剛
    Lee,Jonathan K.
    Contributors: 杜化宇
    Tu,Anthony H.
    李政剛
    Lee,Jonathan K.
    Keywords: 對偶效果
    交易量
    隱含波動度
    波動度預測
    異質性
    固定效果模型
    隨機效果模型
    dual effect
    volume
    implied volatility
    volatility forecasting
    panel data
    heterogeneity
    fixed effects model
    random effects model
    Date: 2004
    Issue Date: 2009-09-18 19:18:11 (UTC+8)
    Abstract: 本研究探討選擇權交易量之大小對於波動度預測之效率性所造成之對偶效果(dual effect),驗證〝正常的高交易量〞與〝異常的高交易量〞對於波動度預測能力是否有不同的影響。本研究採用panel data之資料型態,以LIFFE上市的個股買權為對象,資料長度為三年左右。主要欲探討之假說為: 1.一般而言,交易量大的選擇權,其波動度估計誤差較交易量小的選擇權來得小。 2.相對於平日水準而言,某日交易量異常高的選擇權將有較大的波動度估計誤差。
    本研究所使用的波動度預測模型為隱含波動度(ISD),採用的是最接近到期月份及最接近價平的合約。實證以組合迴歸、固定效果模型、隨機效果模型分別估計之,加以比較。結果發現固定效果模型為較佳之解釋模型,然而結果顯示交易量的對偶效果並不明確影響波動度預測誤差,故推測有某種影響公司間差異的因素,即公司間之異質性,比相對交易量更容易影響波動度預測之誤差。另外,透過組間與組內效果之分析,發現不論是長期還是短期,由於公司間的異質性存在,使得相對交易量對於波動度預測誤差均無明顯影響。
    The purpose of this research is to study the dual effect on the efficiency of volatility forecasting which is caused by the volume of option market, with the intent to test whether〝normal high volume〞and〝abcdrmal high volume〞cause different results on the ability of volatility forecasting. The data used is in the form of panel data. It is drawn from LIFFE, and has a length of about three years. The hypotheses to be examined in this study are:1. High-average-volume options have smaller volatility forecasting errors than low-average-volume options; 2. Options have larger volatility forecasting errors on abcdrmally-high-volume days than on normal-volume days.
    In this research, volatility is forecasted by implied standard deviation (ISD) which is implied in the at-the-money and the nearest expiry month options. Pooled regression、fixed effect model、and random effect model methods were applied. The results show that the fixed effect model made the best analysis amongst the three models. However, the result does not support the hypotheses made above, which means that volume does not have much influence on volatility forecasting error. It is inferred that there exists some other factors which could cause the difference between firms, namely heterogeneity, and these factors have much more powerful influence over volatility forecasting error than volume. Finally, it was found that no matter for long run or short run, because of the existence of heterogeneity, relative volume doesn’t have obvious influence on volatility forecasting errors when analyzing the difference between the between-individual effect and the within-individual effect.
    Reference: Baltagi, B. H., 1995, Econometric Analysis of Panel Data, John Wiley & Sons Ltd, England.
    Baltagi, B. H., 2001, Econometric Analysis of Panel Data, 2nd edn., John Wiley & Sons Ltd, England.
    Baltagi, B. H., and J. M. Griffin, 1984, Short and Long Run Effects in Pooled Models, International Economic Review, Vol. 25, No. 3., 631-645.
    Barron, O. E., and J. M. Karpoff, 2004, Information Precision, Transaction Costs, and Trading Volume, Journal of Banking & Finance 28, 1207-1223.
    Bergman, Y. Z., B. D. Grundy, and Z. Wiener, 1996, General Properties of Option Prices, Journal of Finance, Vol. LI, No. 5., 1573-1610.
    Brooks, C., 1998, Predicting Stock Index Volatility:Can Market Volume Help?, Journal of Forecasting, Vol. 17, 59-80.
    Canina, L., and S. Figlewski, 1993, The Informational Content of Implied Volatility, Review of Financial Studies, Vol. 6, No. 3, 659-681.
    Christensen, B. J., and N. R. Prabhala, 1998, the Relation Between Implied and Realized Volatility, Journal of Financial Economics, 50, 125-150.
    Copeland, T. E., 1976, A Model of Asset Trading Under the Assumption of Sequential Information Arrival, Journal of Finance, Vol. XXXI, No. 4., 1149-1168.
    Cornell, B., 1990, Volume and R2:A First Look, Journal of Financial Research, Vol. XIII, No 1., 1-6.
    Day, T. E., and C. M. Lewis, 1992, Stock Market Volatility and the Information Content of Stock Index Options, Journal of Econometrics 52, 267-287.
    Donaldson, G., and M. Kamstra, 2004, Volatility Forecasts, Trading Volume, and the ARCH versus Option-Implied Volatility Trade-off, Federal Reserve Bank of Atlanta, Working Paper Series, 1-41.
    Ederington, L. H., and W. Guan, 2002, Measuring Implied Volatility:Is an Average Better?Which Average?, Journal of Futures Markets, Vol. 22, No. 9, 811-837.
    Freund, S., and G. P. Webb, 1999, Recent Growth in Nasdaq Trading Volume and Its Relation to Market Volatility, Journal of Financial Research, vol. XXII, No. 4, p. 489-501.
    Greene, W. H., 2000, Econometric Analysis, 4th edn., Prentice Hall International, New Jersey.
    Greene, W. H., 2003, Econometric Analysis, 5th edn., Prentice Hall International, New Jersey.
    Hull, J. C., 2003, Options, Futures, and Other Derivatives, 5th edn., Pearson Education, New Jersey.
    Hauthakker, H. S., 1965, New Evidence on Demand Elasticities, Econometrica, Vol. 33, No. 2., 277-288.
    Jorion, P., 1995, Predicting Volatility in the Foreign Exchange Market, Journal of Finance, Vol. 50, No. 2, 507-528.
    Judge, G., W. E. Griffiths, R. C. Hill, H. Lutkepohl, and T. C. Lee, 1985, The Theory and Practice of Econometrics, 2nd edn., John Wiley and Sons, New York.
    Karpoff, J. M., 1987, the Relation Between Price Change and Trading Volume:A Survey, Journal of Financial and Quantitative Analysis, Vol. 22, No. 1, 109-26.
    Lamoureux, C. G., and W. D. Lastrapes, 1990, Heteroskedasticity in Stock Return Data: Volume versus GARCH Effects, Journal of Finance, Vol. XLV, No. 1., 221-229.
    Lamoureux, C. G., and W. D. Lastrapes, 1993, Forecasting Stock-Return Variances: Toward an Understanding of Stochastic Implied Volatilities, Review of Financial Studies, 6, 293-326.
    Latane, H. A., and J. R. Rendleman, Jr., 1976, Standard Deviations of Stock Price Ratios Implied in Option Prices, Journal of Finance, Vol. 31, No. 2, 369-381.
    Long, D. M., and D. T. Officer, 1997, the Relation Between Option Mispricing and Volume in the Black-Scholes Option Model, Journal of Financial Research, Vol. XX, No. 1, p. 1-12.
    Mayhew, S., and C. Stivers, 2003, Stock Return Dynamics, Option Volume, and the Information Content of Implied Volatility, Journal of Futures Markets, Vol. 23, No. 7, 615-646.
    Mixon, S., 2001, Volume and Volatility: News or Noise?, Financial Review 36, p. 99-118.
    Ncube, M., 1996, Modelling Implied Volatility with OLS and Panel Data Models, Journal of Banking & Finance, 20, 71-84.
    Pindyck, R. S., and D. L. Rubinfeld, 1998, Econometric Models and Economic Forecasts, 4th edn., McGraw-Hill.
    Tauchen, G. E., and M. Pitts, 1983, the Price Variability-Volume Relationship on Speculative Markets, Econometrica, Vol. 51, No. 2, 485-505.
    Roll, R., 1988, R2, Journal of Finance, Vol. XLIII, No. 2, 541-66.
    Robin, A. J., 1993, On Improving the Performance of the Market Model, Journal of Financial Research, Vol. XVI, No. 4, 367-76.
    Description: 碩士
    國立政治大學
    財務管理研究所
    91357019
    93
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0913570191
    Data Type: thesis
    Appears in Collections:[財務管理學系] 學位論文

    Files in This Item:

    File SizeFormat
    index.html0KbHTML2211View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback