English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113822/144841 (79%)
Visitors : 51767126      Online Users : 417
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 應用數學系 > 學位論文 >  Item 140.119/36393
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/36393


    Title: 有關賈可比矩陣數值建構上的討論
    On the Numerical Construction of a Jacobi Matrix
    Authors: 張天財
    Chang, Tian-Tsair
    Contributors: 王太林
    Wang, Tai-Lin
    張天財
    Chang, Tian-Tsair
    Keywords: 賈可比矩陣
    蘭可修斯過程
    Jacobi matrix
    Lanczos process
    Date: 1998
    Issue Date: 2009-09-18 18:28:12 (UTC+8)
    Abstract: 這篇論文使用前人所提出的七種方法LMGS、ITQR、imITQR、CB、HH、TLD和TLS,去造一個賈可比(Jacobi)矩陣。文中我們使用已知的特徵值(eigenvalue)和特徵向量的第一個成份,去運作這些演算法,並列出數值的結果,以比較這六種方法造出來的賈可比矩陣之準確性。
    In this thesis seven methods LMGS、ITQR、imITQR、CB、HH、TLS and TLD developed in the past are applied to construct a Jacobi matrix. We use the known eige-envalues and the first components of eigenvctors of a Jacobi matrix to execute thes-e algorithms and list the numerical results and compare the accuracy of the computed Jacobi matrix.
    Reference: [1] G. S. Ammar and Chunyang He, On an inverse eigenvalue problem for unitary Hessenberg matrices, Linear Algebra Appl. 218 (1995), 263-271.
    [2] G. S. Ammar and W. Gragg and L. Reichel, Constructing a unitary Hessenberg matrix from spectral data, in G. H. Golub and P. Van Dooren, Eds., Numerical. Linear. Algebra, Digital Signal Processing and Parallel Algorithms (Springer, N Y, 1991) 358-396.
    [3] D. Boley and G. H. Golub, A survey of matrix inverse eigenvalue problems, Inverse Problems 3 (1987), 595-622.
    [4] C. de Boor and G. H. Golub, The numerically stable reconstruction of a Jacobi matrix from spectral data, Linear Algebra Appl. 21 (1978), 245-260.
    [5] M. T. Chu, Inverse eigenvalue problems, SIAM. Rev. 40 (1998), 1-39.
    [6] B. N. Datta, Numerical Linear Algebra and Applications, Brooks/Cole, Pacific Grove, California, 1995.
    [7] S. Elhay, G. H. Golub, and J. Kautsky, Updating and downdating of orthogonal polynomials with data fitting applications, SIAM J. Matrix Anal. 12 (1991), 327-353.
    [8] W. Gautschi, Computational aspects of orthogonal polynomials, P.Nevai(ed.), 181-216, 1990 Kluwer Academin Publishers.
    [9] W. B. Gragg, The QR algorithm for unitary Hessenberg matrices, J. Comput. Appl. Math. 16 (1968), 1-8.
    [10] L. J. Gray and D. G .Wilson, Construction of a Jacobi matrix from spectral data, Linear Algebra Appl.14 (1976),131-134.
    [11] H. Hochstadt, On the construction of a Jacobi matrix from spectral data, Linear Algebra Appl. 8 (1974), 435-446.
    [12] H. Hochstadt, On some inverse problems in matrix theory, Ariciv der Math. 18 (1967), 201-207.
    [13] T. Y. LI, and Zhonggang Zeng, The Laguerre iteration in solving the symmetric tridiagonal eigenproblem, revisted, SIAM. J. Comput. 15 (1994), 1145-1173.
    [14] B. N. Parlett, The Symmetric Eigenvalue Problem, Prentice Hall, Englewood Cliffs, N. J. 1980.
    [15] L. Reichel, Fast QR decomposition of Vandermonde-like matrices and polynomial least squares approximation, SIAM J. Matrix Anal. Appl. 12 (1991), 552-564.
    [16] T-L. Wang, Notes on some basic matrix eigenproblem computations, unpublished manuscript.
    Description: 碩士
    國立政治大學
    應用數學研究所
    85751005
    87
    Source URI: http://thesis.lib.nccu.edu.tw/record/#B2002001691
    Data Type: thesis
    Appears in Collections:[應用數學系] 學位論文

    Files in This Item:

    File SizeFormat
    index.html0KbHTML2397View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback