政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/36335
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 113822/144841 (79%)
造访人次 : 51871274      在线人数 : 297
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    政大機構典藏 > 教育學院 > 教育學系 > 學位論文 >  Item 140.119/36335


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/36335


    题名: 多層次結構方程式模型在大型資料庫上的應用
    Applying Multilevel Structural Equation Modeling to a Large-Scale Database
    作者: 李仁豪
    Li,Ren Hau
    贡献者: 余民寧
    Yu,Min Ning
    李仁豪
    Li,Ren Hau
    关键词: 多層次結構方程式模型
    層級二樣本點數目
    多群組多層次結構方程式模型
    multilevel structural equation modeling
    number of level-2 units
    multiple group multilevel structural equation modeling
    MUML
    日期: 2006
    上传时间: 2009-09-18 18:20:41 (UTC+8)
    摘要: 本研究的主要目的是藉由實徵的PISA資料庫資料將多層次結構方程式模型的方法學介紹到台灣的教育領域。多層次結構方程式模型適合應用在大型且具階層或巢狀結構的資料,可以解決因群集性抽樣設計所導致的樣本點相依的問題。
    本研究中包含三個小研究。在研究一中,實徵的資料經由多層次結構方程式模型步驟化的分析,並與傳統的結構方程式模型的分析結果相互比較。一共有五個構念及其測量指標從PISA 2003資料庫中被選取來建構多層次結構方程式模型。樣本包含948個學校共26,884位15歲來自加拿大的學生。研究結果顯示某些結構係數的正負向關係在組內層次與組間層次是十分不同的,這也彰顯出多層次結構方程式模型與傳統結構方程式模型比較下的價值。研究一的發現指出,在數學興趣與數學工具性動機控制的條件下,教師的支持對學生的數學成績及數學自我效能在組間層次並無效果,但教師的支持對學生的數學自我效能在組內層次具有正向顯著的效果。此外,除了在組間層次上數學興趣對數學成績有顯著的負向效果以及數學工具性動機對數學自我效能沒有顯著效果外,數學興趣與數學工具性動機對數學成績及數學自我效能具有顯著的正向效果。另外,數學成績對數學自我效能具有很大的效果,特別是在組間層次。
    在研究二中,藉由評估跨越不同層級二樣本大小(即120、240、360、480、600、720、840、948個學校)時的模式適配度及參數估計值的穩定性,來決定一個最小較佳的層級二樣本數相對於層級二估計參數數目的比值。研究結果顯示,該比值大約至少8:1是較可以被接受的結果。在研究三中,藉由多群組多層次結構方程式模型進行跨國家的比較。根據研究二的較佳最小比例以及亞洲國家在PISA 2003資料庫中有限的層級二樣本數,一個將焦點集中在數學興趣對數學成績的不同層次預測關係之新多層次結構方程式模型被提出。由再次隨機取樣的加拿大145所學校作為西方國家的代表樣本,而由只有143所學校的日本樣本作為東方國家的代表。研究結果顯示,跨越加拿大與日本樣本,在任一層級中出現十分不同的預測效果。數學興趣對數學成績的預測效果在加拿大樣本中的兩層級皆是正向地顯著,但在日本樣本中卻都是負向地顯著。這意謂著未來某些重要的教育及心理學變項之間關係的跨國研究應該在被重視。
    The main purpose of this research was to introduce multilevel structural equation modeling methodology to Taiwan education field by applying empirical example from PISA 2003 database. Multilevel structural equation modeling was suitable to be applied to the large-scale and hierarchical or nested data structure. It could solve the problem of dependency among sample units resulted from clustered sampling design.
    There were three studies in the research. In study one, the empirical data dealt with multilevel structural equation modeling analysis was undertaken step by step and compared with conventional structural equation modeling analysis. There were five constructs and their measurement indicators from PISA 2003 database mapped to form the multilevel structural equation model. The sample was 948 schools with 26884 15-year-old students from Canada. The result showed the valences of some structural coefficients were quite different in between-level and within-level structural equation models, which characterisized the value of multilevel structural equation modeling when compared with the outcomes from conventional structural equation modeling analysis. The findings of study one indicated that teacher support had no effect on students’ mathematics grades and mathematics self-efficacy in between-level part but had a significant positive effect on mathematics self-efficacy in within-level part when both interest in mathematics and instrumental motivation to mathematics grades were considered in the model. Besides, interest in mathematics and instrumental motivation had positive effects on mathematics grades and mathematics self-efficacy except for negative effect from interest in mathematics to mathematics grades and no effect from instrumental motivation to mathematics self-efficacy in between-level part. In addition, mathematics grades had great influences on mathematics self-efficacy, especially in between-level part.
    In study two, a better minimum ratio of the number of level-2 units relative to the number of parameter estimates in between-level part was searched by evaluating the model-fit and stability of parameter estimates across several Canada samples with 120, 240, 360, 480, 600, 720 ,840, and 948 schools. The result showed that the ratio at least about 8:1 was appreciated. In study three, cross-national comparisons were processed by multiple group multilevel structural equation modeling. Based on the better minimum ratio from study two and limited level-2 sample sizes from Asian countries in PISA 2003, a new multilevel structural equation model was proposed focusing on the structural coefficient of mathematics grades regressed on interest in mathematics in each level. A random resampling Canada sample with 145 schools was served as the representative of the West nations and the Japan sample with only 143 schools was on behalf of the East nations. The result showed that quite different predictive effect in either level across the Canada sample and the Japan sample. The predictive effects of the interest in mathematics to mathematics grades were positively significant in the Canada sample in each level but were negatively significant in the Japan sample in each level, which implied that cross-national studies in some important relationships among educational and psychological variables should be emphasized in the future.
    參考文獻: Aitkin, M. A., & Longford, N. (1986). Statistical modelling in school effectiveness studies (with discussion). Journal of the Royal Statistical Society, Series A, 149, 1-43.
    Amabile, T. M., Hill, K. G., Hennessey, B. A., & Tighe, E. M. (1994). The work preference inventory: Assessing intrinsic and extrinsic motivational orientations. Journal of Personality and Social Psychology, 66, 950-967.
    Bandura, A. (1997). Self-efficacy: The exercise of control. New York: Freeman.
    Bentler, P. M. (1988). Comparative fit indexes in structural models. Psychological Bulletin, 107, 238-246.
    Bentler, P. M. (1992). On the fit of models to covariances and methodology to the Bulletin. Psychological Bulletin, 112, 400-404.
    Bentler, P. M., & Liang, J. (2003). Two-level mean and covariance structures: Maximum likelihood via an EM algorithm. In S. P. Reise & N. Duan (Eds.), Multilevel modeling: Methodological advances, issues, and applications (pp. 53-70). Mahwah, NJ: Lawrence Erlbaum Associates.
    Bliese, P. D., & Halverson, R. R. (1998). Group size and measures of group-level properties: An examination of eta-squared and ICC values. Journal of Management, 24(2), 157-172.
    Bliese, P. D. (2000). Within-group agreement, non-independence, and reliability: Implications for data aggregation and analysis. In K. J. Klein & S. W. J. Kozlowski (Eds.), Multilevel theory, research, and methods in organizations: Foundations, Extensions, and new directions. San Francisco: Jossey-Bass.
    Bock, R. D. (1989). Multilevel analysis of educational data. San Diego, CA: Academic Press.
    Boomsma, A. (1983). On the robustness of LISREL (maximum likelihood estimation) against small sample size and nonnormality. Unpublished doctoral dissertation, University of Groningen.
    Brophy, J. (1987). Socializing students’ motivation to learn. In M. L. Maehr & D. A. Kleiber (Eds.), Advances in motivation and achievement (Vol. 5, pp. 181-210). Greenwich, CT: JAI Press.
    Pekrun, R. (2000). A social-cognitive, control-value theory of achievement emotions. In J. Heckhausen (Ed.), Motivational psychology of human development (pp. 143-163). Oxford, England: Elsevier.
    Pekrun, R., Goetz, T., Titz, W., & Perry, R. P. (2002). Academic emotions in students’ self-regulated learning and achievement: A program of qualitative and quantitative research. Educational Psychologist, 37(2), 91-105.
    Pintrich, P. R. & Schunk, D. H. (1996). Motivation in education: Theory, research, and applications. Englewood Cliffs, NJ: Merrill/Prentice Hall.
    Raudenbush, S. W. (1995). Maximum likelihood estimation for unbalanced multilevel covariance structure models via the EM algorithm. British Journal of Mathematical and Statistical Psychology, 48, 359-370.
    Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical linear models: Applications and data analysis methods (2nd ed.). Thousand Oaks, CA: Sage.
    Raudenbush, S. W., Rowan, B., & Kang, S. J. (1991). A multilevel, multivariate model for studying school climate in secondary schools with estimation via the EM algorithm. Journal of Educational Statistics, 16, 295-330.
    Raudenbush, S. W., & Sampson, R. (1999). Assessing direct and indirect effects in multilevel designs with latent variables. Sociological Methods & Research, 28(2), 123-153.
    Robinson, W. S. (1950). Ecological correlations and the behaviour of individuals. American Sociology Review, 15, 351-357.
    Rowe, K. J. (2003). Estimating interdependent effects among multilevel composite variables in psychosocial research: An example of the application of multilevel structural equation modeling. In S. P. Reise & N. Duan (Eds.), Multilevel modeling: Methodological advances, issues, and applications (pp. 255-284). Mahwah, NJ: Lawrence Erlbaum Associates.
    Rowe, K. J., & Hill, P. W. (1998). Modeling educational effectiveness in classrooms: The use of multi-level structural equations to model students’ progress. Educational Research and Evaluation, 4(4), 307-347.
    Brown, M. W., & Cudeck, R. (1993). Alternative ways of assessing model fit. In K. A. Bollen & J. S. Long (Eds.), Testing structural equation models (pp. 136-162). Newbury Park, CA: Sage.
    Rowe, K. J., & Rowe, K. S. (1999). Investigating the relationship between students’ attentive-inattentive behaviors in the classroom and their literacy progress. International Journal of Education Research, 31(1-2), 1-137.
    Schmidt, W. B. (1969). Covariance structure analysis of the multivariate random effects model. Unpublished doctoral dissertation, Department of Education, University of Chicago.
    Schunk, D. H. & Pajares, F. (2002). The development of academic self-efficacy. In A. Wigfield & J. S. Eccles (Eds.), Development of achievement motivation (pp. 15-31). San Diego, CA: Academic Press.
    Snijders, T. A. B., & Bosker, R. J. (1999). Multilevel analysis: An introduction to basic and advanced multilevel modeling. London: Sage.
    Stevenson, H. W., Lee, S., Chen, C., Stigler, J. W., Hsu, C. C., & Kitamura, S. (1990). Contexts of achievement: A study of American, Chinese, and Japanese children. Monographs of the Society for Research in Child Development, 55, (Serial No. 221.).
    Stipek, D. (2002). Good instruction is motivating. In A. Wigfield & J. S. Eccles (Eds.), Development of achievement motivation (pp. 309-332). San Diego, CA: Academic Press.
    Tucker, L. R., & Lewis, C. (1973). The reliability coefficient for maximum likelihood factor analysis. Psychometrika, 38, 1-10.
    Tanaka, J. S. (1987). “How big is big enough ?”: Sample size and goodness of fit in structural equation models with latent variables. Child Development, 58, 134-146.
    Tate, R. L., & Wongbundhit, Y. (1983). Random versus nonrandom coefficient models for multilevel analysis. Journal of Educational Statistics, 8, 103-120.
    Wiley, D. E., & Bock, R. D. (1967). Quasi-experimentation in educational settings: Comment. School Review, 75(4), 353-366.
    Bryk, A. S., & Raudenbush, S. W. (1992). Hierarchical linear models: Applications and data analysis methods. Newbury Park, CA: Sage.
    Bryk, A. S., Raudenbush, S. W., & Congdon, R. (1994). HLM: Hierarchical linear modeling with the HLM/2L and HLM/3L Programs. Chicago: Scientific Software International.
    Burstein, L., Kim, K. S., & Delandshere, G. (1989). Multilevel investigations of systematically varying slopes: Issues, alternatives, and consequences. In R. D. Bock (Ed.), Multilevel analysis of educational data (pp. 233-276). New York: Academic Press.
    Burstein, L., Linn, R. L., & Capell, F. J. (1978). Analyzing multilevel data in the presence of heterogeneous within-class regressions. Journal of Educational Statistics, 3(4), 347-383.
    Byrne, B. M. (1998). Structural equation modeling with LISREL, PRELIS, and SIMPLIS: Basic concepts, applications, and programming. Mahwah, NJ: Lawrence Erlbaum Associates.
    Caprara, G. V., Barbaranelli, C., Borgogni, L., & Steca, P. (2003). Efficacy beliefs as determinants of teachers’ job satisfaction. Journal of Educational Psychology, 95(4), 821-832.
    Chan, D. (1998). Functional relations among constructs in the same content domain at different levels of analysis: A typology of composition models. Journal of Applied Psychology, 83(2), 234-246.
    Cheung, M. W. L., & Au, K. (2005). Applications of multilevel structural equation modeling to cross-national research. Structural Equation Modeling, 12(4), 598-619.
    Chiu, C., Hong, Y., & Dweck, C. S. (1997). Lay disposition and implicit theories of personality. Journal of Personality and Social Psychology, 73, 19-30.
    Coleman, J. S., Campbell, E. O., Hobson, C. F., McPartland, J., Mood, A. M., Weifeld, F. D., & York, R. L. (1966). Equality of education opportunity. Washington, DC: U. S. Department of Health, Education and Welfare, Office of Education, U. S. Government Printing Office.
    Connell, J. P., & Wellborn, J. G. (1991). Competence, autonomy, and relatedness: A motivational analysis of self-system processes. In M. R. Gunnar & L. A. Sroufe (Eds.), Minnesota Symposia on Child Psychology: Vol. 23. Systems and development. (pp. 43-77). Hillsdale, NJ: Erlbaum.
    Covington, M. V. (1984). The self-worth theory of achievement motivation: Findings and implications. The Elementary School Journal, 85, 5-20.
    Cramer, J. S. (1964). Efficient grouping: Regression and correlation in Engel curve analysis. Journal of the American Statistical Association, 59, 233-250.
    Cronbach, L. J. (1976). Research on classrooms and schools: Formulation of questions, design, and analysis. Unpublished manuscript, Stanford University, Stanford Evaluation Consortium, School of Education.
    Cronbach, L. J., & Webb, N. M. (1975). Between-class and within-class effects in a reported aptitude × treatment interaction: Reanalysis of a study by G. L. Anderson. Journal of Educational Psychology, 67, 717-724.
    Curran, P. J. (2003). Have multilevel models been structural equation models all along? Multivariate Behavioral Research, 38(4), 529-569.
    Deci, E. L. (1971). Effects of externally mediated rewards on intrinsic motivation. Journal of Personality and Social Psychology, 18, 105-155.
    De Leeuw, J., & Kreft, I. (1986). Random coefficient models for multilevel analysis. Journal of Educational Statistics, 11, 57-85.
    Duncan, T. E., Alpert, A., & Duncan, S. C. (1998). Multilevel covariance structure analysis of siblings antisocial behavior. Structural Equation Modeling, 5, 211-228.
    Dyer, N. G., Hanges, P. J., & Hall, R. J. (2005). Applying multilevel confirmatory factor analysis techniques to the study of leadership. The Leadership Quarterly, 16, 149-167.
    Eccles, J. S., & Wigfield, A. (2002). Motivational beliefs, values, and goals. Annual Review Psychology, 53, 109-132.
    Erikson, E. H. (1963). Childhood and society (2nd ed.). New York: Norton.
    Farmer, G. L. (2000). Use of multilevel covariance structure analysis to evaluate the multilevel nature of theoretical constructs. Social Work Research, 24(3), 180-189.
    Goldstein, H. (1986). Multilevel mixed linear model analysis using iterative generalized least squares. Biometrika, 73(1), 43-56.
    Goldstein, H. (1987). Multilevel models in educational and social research. London: Griffin.
    Goldstein, H. (1995). Multilevel statistical models (2nd ed.). New York: John Wiley & Sons.
    Goldstein, H. (2003). Multilevel statistical models (3rd ed.). New York: Oxford University Press.
    Goldstein, H., & McDonald, R. (1988). A general model for the analysis of multilevel data. Psychometrika, 53(4), 455-467.
    Gottfried, A. E. (1990). Academic intrinsic motivation in young elementary school children. Journal of Educational Psychology, 82, 525-538.
    Graham, S. (1994). Motivation in African Americans. Review of Educational Research, 64, 55-117.
    Grolnick, W. S., Gurland, S. T., Jacob, K. F., & Decourcey, W. (2002). The development of self-determination in middle childhood and adolescence. In A. Wigfield & J. S. Eccles (Eds.), Development of achievement motivation (pp. 147-171). San Diego, CA: Academic Press.
    Hair, J. F., Anderson, R. E., Tatham, R. L., & Black, W. C. (2006). Multivariate data analysis (6th ed.). London: Prentice-Hall International.
    Haggard, E. A. (1958). Intraclass correlation and the analysis of variance. New York: The Dryden Press.
    Hannan, M. T. (1970). Problems of aggregation and disaggregation in sociological research. University of North Carolina. Chapel Hill, NC: Institute for Research in Social Science.
    Hannan, M. T. (1991). Aggregation and disaggregation in the social sciences. Lexington, Mass: Lexington Books.
    Hannan, M. T., & Burstein, L. (1974). Estimation from grouped observations. American Sociological Review, 39(3), 374-392.
    Härnqvist, K. (1978). Primary mental abilities at collective and individual levels. Journal of Educational Psychology, 70(5), 706-716.
    Harris, J. A. (1913). On the calculation of intra-class and inter-class coefficients of correlation from class moments when the number of possible combinations is large. Biometrika, 9(3/4), 446-472.
    Harville, D. A. (1977). Maximum likelihood approaches to variance component estimation and to related problems. Journal of the American Statistical Association, 72(358), 320-338.
    Heck, R. H. (2001). Multilevel modeling with SEM. In G. A. Marcoulides & R. E. Schumacker (Eds.), New developments and techniques in structural equation modeling (pp. 89-127). Mahwah, NJ: Lawrence Erlbaum Associates.
    Heck, R. H., & Thomas, S. L. (2000). An introduction to multilevel modeling techniques. Mahwah, NJ: Lawrence Erlbaum Associates.
    Hofmann, D. A. (1997). An overview of the logic and rationale of hierarchical linear models. Journal of Management, 23(6), 723-744.
    Hox, J. (1993). Factor analysis of multilevel data: Gauging the Muthén model. In J. H. L. Oud & R. A. W. van Blokland-Vogelesang (Eds.), Advances in longitudinal and multivariate analysis in the behavioral sciences (pp. 141-156). Nijmegen: ITS.
    Hox, J. (2002). Multilevel analysis: Techniques and applications. Mahwah, NJ: Lawrence Erlbaum Associates.
    Hox, J., & Maas, C. J. M. (2001). The accuracy of multilevel structural equation modeling with pseudobalanced groups and small samples. Structural Equation Modeling, 8, 198-207.
    Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equaton Modeling, 6(1). 1-55.
    Jöreskog, K. G., & Sörbom, D. (1996). LISREL 8: User’s reference guide. Chicago: Scientific Software International.
    Jöreskog, K. G., Sörbom, D., du Toit, S., & du Toit, M. (2000). LISREL 8: New statistical features. Chicago: Scientific Software International.
    Julian, M. W. (2001). The consequences of ignoring multilevel data structures in nonhierarchical covariance modeling. Structural Equation Modeling, 8(3), 325-352.
    Kaplan, D. (1998). Methods for multilevel data analysis. In G. A. Marcoulides (Ed.), Modern methods for business research (pp. 337-358). Mahwah, NJ: Lawrence Erlbaum Associates.
    Kaplan, D. (2000). Structural equation modeling: Foundations and extensions. Thousand Oaks, CA: Sage.
    Kaplan, D., & Elliott, P. R. (1997). A didactic example of multilevel structural equation modeling applicable to the study of organizations. Structural Equation Modeling, 4(1), 1-23.
    Kish, L. (1965). Survey sampling. New York: Wiley.
    Klein, K. J., Tosi, H., & Cannella, A. A., Jr. (1999). Multilevel theory building: Benefits, barriers, and new developments. Academy of Management Review, 24, 243-248.
    Klein, K. J., & Kozlowski, S. W. J. (2000). From micro to meso: Critical steps in conceptualizing and conducting multilevel research. Organizational Research Methods, 3, 211-236.
    Kline, R. B. (1998). Principles and practice of structural equation modeling. New York: Guilford Press.
    Koch, G. G. (1983). Intraclass correlation coefficient. Encyclopedia of Statistical Science, 4, 212-217.
    Kreft, I., & De Leeuw, J. (1998). Introducing multilevel modeling. Thousand Oaks, CA: Sage.
    Kruglanski, A. W., Friedman, I., & Zeevi, G. (1971). The effects of extrinsic incentives on some qualitative aspects of task performance. Journal of Personality, 39, 606-617.
    Langbein, L. I. (1977). Schools or students: Aggregation problems in the study of student achievement. Evaluation Studies Review Annual, 2, 270-298.
    Lee, S. Y. (1990). Multilevel analysis of structural equation models. Biometrika, 77(4), 763-772.
    Lee, S. Y., & Poon, W. Y. (1998). Analysis of two-level structural equation models via EM type algorithms. Statistica Sinica, 8, 749-766.
    Lepper, M. R., & Henderlong, J. (2000). Turning “play” into “work” and “work” into “play”: 25 years of research on intrinsic versus extrinsic motivation. In C. Sansone & J. M. Harackiewicz (Eds.), Intrinsic and extrinsic motivation: The search for optimal motivation and performance (pp. 257-307). San Diego, CA: Academic Press.
    Li, F., Duncan, T. E., Duncan, S. C., Harmer, P., & Acock, A. (1997). Latent variable modeling of multilevel intrinsic motivation data. Measurement in Physical Education and Exercise Science, 1(4), 223-244.
    Li, F., Duncan, T. E., Harmer, P., Acock, A., & Stoolmiller, M. (1998). Analyzing measurement models of latent variables through multilevel confirmatory factor analysis and hierarchical linear modeling approaches. Structural Equation Modeling, 5(3), 294-306.
    Longford, N. T. (1987). A fast scoring algorithm for maximum likelihood estimation in unbalanced mixed models with nested random effects. Biometrika, 74(4), 817-827.
    Longford, N. T., & Muthén, B. O. (1992). Factor analysis for clustered observations. Psychometrika, 57(4), 581-597.
    Lüdtke, O., & Trautwein, U. (2007). Aggregating to the between-person level in idiographic research designs: Personal goal research as an example of the need to distinguish between reliability and homogeneity. Journal of Research in Personality, 41, 230-238.
    Luke, D. A. (2004). Multilevel modeling. Thousand Oaks, CA: Sage.
    MacCallum, R. C., Browne, M. W., & Sugawara, H. M. (1996). Power analysis and determination of sample size for covariance structure modeling. Psychological Methods, 1, 130-149.
    Martin, A. J. (2006). The relationship between teachers’ perceptions of student motivation and engagement and teachers’ enjoyment of and confidence in teaching. Asia-Pacific Journal of Teacher Education, 34(1), 73-93.
    Mason, W. M., Wong, G. Y., & Entwistle, B. (1984). The multilevel linear model: A better way to do contextual analysis. In S. Leinhardt (Ed.), Sociological methodology 1983-1984 (pp. 72-103). London: Jossey Bass.
    McDonald, R. P. (1994). The bilevel reticular action model for path analysis with latent variables. Sociological Methods and Research, 22(3), 399-413.
    McDonald, R. P., & Goldstein, H. (1989). Balanced versus unbalanced designs for linear structural relations in two-level data. British Journal of Mathematical and Statistical Psychology, 42, 215-232.
    Mehta, P. D., & Neale, M. C. (2005). People are variables too: Multilevel structural equations modeling. Psychological Methods, 10(3), 259-284.
    Middleton, J. A., & Spanias, P. A. (1999). Motivation for achievement in mathematics: Findings, generalizations, and criticisms of the research. Journal for Research in Mathematics Education, 30(1), 65-88.
    Muthén, B. O. (1989). Latent variable modeling in heterogeneous populations. Psychometrika, 54, 557-585.
    Muthén, B. O. (1994). Multilevel covariance structure analysis. Sociological Methods and Research, 22, 376-398.
    Muthén, B. O. (1991). Multilevel factor analysis of class and student achievement components. Journal of Educational Measurement, 28(4), 338-354.
    Muthén, L. K., & Muthén, B. O. (2006). Mplus user’s guide (4th ed.). Los Angeles, CA: Muthén & Muthén.
    Muthén, B., & Satorra, A. (1989). Multilevel aspects of varying parameters in structural models. In R. D. Bock (Ed.), Multilevel analysis of educational data (pp. 87-99). New York: Academic Press.
    Muthén, B. O., & Satorra, A. (1995). Complex sample data in structural equation modeling. In P. Marsden (Ed.), Sociological methodology 1995 (pp. 267-316). Washington, DC: American Sociological Association.
    Newman, R. S. (2002). What do I need to do to succeed…when I don’t understand what I’m doing!?: Developmental influences on students’ adaptive help seeking. In A. Wigfield & J. S. Eccles (Eds.), Development of achievement motivation (pp. 285-306). San Diego, CA: Academic Press.
    Newman, R. S., & Goldin, L. (1990). Children’s reluctance to seek help with school work. Journal of Educational Psychology, 82, 92-100.
    Nicholls, J. G. (1984). Achievement motivation: Conceptions of ability, subjective experience, task choice, and performance. Psychological Review, 91, 328-346.
    Nicholls, J. G., Cobb, P., Yackel, E., Wood, T., & Wheatley, G. (1990). Students’ theories of mathematics and their mathematical knowledge: Multiple dimensions of assessment. In G. Kulm (Ed.), Assessing higher order thinking in mathematics (pp. 137-154). Washington, DC: American Association for the Advancement of Science.
    Olafson, K. M., & Ferraro, F. R. (2001). Effects of emotional state on lexical decision performance. Brain and Cognition, 45, 15-20.
    Organization for Economic Co-operation and Development [OECD] (2005). PISA 2003 technical report. Paris: OECD.
    描述: 博士
    國立政治大學
    教育研究所
    92152512
    95
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0921525121
    数据类型: thesis
    显示于类别:[教育學系] 學位論文

    文件中的档案:

    档案 大小格式浏览次数
    index.html0KbHTML2429检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈