政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/35346
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 113873/144892 (79%)
造訪人次 : 51913413      線上人數 : 516
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/35346


    題名: 資料採礦技術之商業應用研究-以航空公司會員系統為例
    作者: 盧世銘
    Lu,Shih-Ming
    貢獻者: 劉文卿
    Liou,Wen-Chin
    盧世銘
    Lu,Shih-Ming
    關鍵詞: 資料探勘
    資料採礦
    叢集分析
    會員系統
    航空公司
    Data Mining
    FFP
    Clustering
    Frequent Flyer Program
    Airlines
    日期: 2003
    上傳時間: 2009-09-18 14:47:43 (UTC+8)
    摘要: 關係行銷或是一對一行銷是目前行銷領域上廣泛被討論的議
    題,企業要如何透過有效的辨識、區隔、互動以及客制化來量身打造
    顧客專屬的個人化產品與服務內容,並強化其重複消費動機及忠誠,
    為目前各種產業爭相積極追求的目標,此外,由於微利時代風暴,各
    產業無不希望透過顧客價值的辨識與經營,實現以更有效、更低的成
    本的差異化行銷策略來創造高收益的企業經營目標,以航空產業如此
    資本密集,高固定成本,低變動成本以及不對稱的供需平衡,誰掌握
    低成本領導與差異化策略優勢,便能決戰存續於二十一世紀超競爭時
    代之中。
    由於資訊科技、網際網路以及資料探勘技術的臻於成熟, 充份
    發揮了跨國、即時、深度滲透與互動的特性,使得關係行銷、一對一
    行銷的實現變得更加有效而可行。本研究希望從顧客價值的認定、顧
    客忠誠策略以及資料探勘技術的探討,來思考如何運用於航空公司會
    員系統的顧客區隔,同時,希能透過航空公司產業通路架構、全球旅
    行社訂位系統(CRS)的發展現狀、微妙的航空公司間策略聯盟以及不
    同航空公司所提供的會員酬賓計劃內容的探討與陳述,初略地對個案
    公司的所在環境進行策略性分析,以建議其所需採取投入關係行銷的
    主要焦點客層。
    緊接著, 利用資料探勘工具中的分群技術, 選定有效的指標變
    數,針對某一區間的會員交易資料進行分群,藉由研究各群會員所蘊
    含的特殊屬性,如營收貢獻、產品特性、通路喜好以及消費行為等等,
    依據前述所定義的目標客層,以創造顧客價值為目標,精確建立目標
    客戶群,並據以設計不同的行銷策略與產品組合,逐步深耕建立完整
    會員關係行銷資料庫。
    最後, 對於本研究所無法觸及的研究議題, 概略指出後續可能
    的研究方向與建議。
    Customer Relationship Management and data mining in this hyper-competitive
    era have revealed a lot of interesting and innovative opportunities to enrich the
    capability of company to realize and provide customer value. They touch the most
    critical issue of the enterprise, “How can we create and sustain successful
    advantage, and maximize profitability by leveraging new technologies ?"In this
    thesis, we will focus on the application of data mining in the FFP of the airlines
    industry, and look over the differences among FFP members to discover the
    implicative needs of FFP customers.
    First of all, we start discussion on literature review in chapter two, which was
    divided into three parts: customer loyalty strategy, customer value and data mining.
    In this chapter, we put emphasis on the concepts and definitions of above topics, and
    they would be helpful to us to select and decide key variables in the following data
    mining practice.
    Chapter three of this thesis is to introduce the structure and characteristics of
    the airlines industry, the history of Computerized Reservation System(CRS), the
    airlines strategy alliance and the FFP system, and to figure out the way to understand
    the existing threats and opportunities.
    Chapter four, which was abode by the steps of data mining process, defines
    business issues and collects around one year`s FFP historical transaction data to
    establish the target data and perform an actual data mining practice. In this real
    practice, we use the demographic cluster function of IBM Intelligent Mining tool to
    do member clustering. We select net revenue, first and business class spending rate,
    reservation booking designator and customer activation as analytical variables to
    perform FFP member clustering. Each variable has been well equipped with weight
    and method to produce best cluster pattern.
    Finally, according to the mining results we have explored and interpreted, we
    provide our draft recommendations about marketing planning and mix activities from
    the perspectives of FFP members clustering.
    參考文獻: 英文部分:
    1. Dennis L. Duffy, “Customer Loyalty Strategies”, Journal of
    Consumer Marketing, Vol. 15 1998, pp 435~448.
    2. Nigel Magson, “Database Workshop : Determining and measuring
    customer value”, The Journal of Database Marketing, Volume 6
    Number 1 1998, pp24 ~ pp33..
    3. H. Michael Chung; Paul Gray, ”Special section : Data Mining”,
    Journal of Management Information Systems, Summer 1996, pp11 ~
    pp 16.
    4 ..
    Rex S Toh;Peter Raven , ”Perishable asset revenue management :
    Integrated internet marketing strategies…”, Transportation Journal,
    Summer 2003, pp30 ~ pp40..
    5. Goodman, John, “Leveraging The Customer Database To Your
    Competitive Advance”, Direct Marketing, Dec. 1992, pp26 ~ pp27.
    6. Department of Transportation, “Computer Reservation System(CRS)
    Regulations : Final Rule”, January 2004.
    7. Jyh-Yih Yang, Abby Liu, “Frequent Flyer Program : a case study of
    China airlines’s marketing initiative – Dynasty Flyer Program”,
    Tourism Management, November 2002.
    8. Gary Mason, Nick Barker, “Buy now fly later : an investigation of
    airlines frequent flyer programmes”, Tourism Management, 1996,
    pp219 ~ pp223.
    9. Berger, P. and Nasr N. I., “Customer Lifetime Value: Marketing
    Models and Application,” Journal of Interactive Marketing, 12(1),
    Winter 1998.
    10. Veandko, James & Russo, Andrew(1999), “Data Mining and
    Modeling As a Marketing Activity”, Direct Marketing, pp.52-55.
    11. Mark Marple, Michael Zimmerman, “A customer retention
    strategy”, Mortgage Banking, Aug 1999, pp45~49.
    12. Keith J. Mason, “Marketing low-cost airlines services to business
    travellers”, Journal of Air Transport Management, 2001, pp103 ~
    pp109.
    13. Barkin, Thomas I., Hertzell O. Staffan, and Stephanie J.
    Young(1995),” Facing Low-cost Competitors: Lessons from US
    Airlines”, The McKinsey Quarterly, Number 4, pp. 87-99.
    14. Holbrook, K.B., “Customer Value-A Framework for Analysis and
    Research”, Advance in Consumer Research, Vol.23, 1996,
    pp.138-142.
    15. Everitt, B.S., “Cluster Analysis,” John Wiiley & Sons,Inc.,1993.
    16. Jain, A. K. and Dubes, R. C., “Algorithm for Clustering Data,”
    Prentice Hall, 1988.
    17. Kaufman, L. and Rousseeuw, P.J., “Finding Groups in Data: An
    Introduction To Cluster Analysis,” John Wiley & Sons, Inc., New
    York,NK, 1990.
    18. Hinneburg and D. A. Keim, “An Efficient Approach to Clustering
    in Multimedia Databases with Noise,” Proc. 4th Int. Conf. on
    Knowledge Discovery and Data Mining, New York, AAAI Press,
    1998.
    19. Groth, Robert( 1999) , Data Mining: Building Competitive
    Advantage, NJ: Prentice Hall PTR.
    20. IATA,”Prorate Manual : Passenger”,International Air Transport
    Assosciation, December, 2003.
    21. IBM, “IBM Intelligent Miner for Data”, IBM,Version 8.1, 2002.
    中文部分:
    1 ..
    Leyland F. Pitt, T. Ewing&Pierre Berthon, 李田樹譯,「提高顧客
    的終身價值」, 世界經理文摘, 2001 年2 月, 第34~52 頁。。
    2 .. ARC 遠擎管理顧問公司,「顧客關係管理深度解析」,遠擎管理顧
    問股份有限公司, 2001 年。。
    3 .. M.J.Xavier, 李茂興, 沈孟宜譯,「策略性行銷」,弘智,2001 年。。
    4 .. Philip Kotler, 方世榮譯,「行銷管理」, 東華書局, 2003 年。。
    5. 丁惠民,「顧客智能的功能應用模式與價值體系」,ARC 遠擎管理
    顧問公司, 2001 年11 月, 第12-21 頁。
    6. Richard J Roiger, Michael W. Geatz,曾新穆, 李建億譯,「資料探
    勘」, 東華書局, 2003 年。。
    7. 林義堡,「運用資訊科技推動顧客關係管理」,電子化企業經理人
    報告, 第35-42 頁, 2000 年。
    8. 蔡名皇,「電子商務經營模式之研究」,國立台北大學企業管理學
    系碩士論文, 2000 年。
    9. 蕭正平,「顧客關係行銷的發展與實務」,國立臺灣大學商學研究
    所碩士論文, 2000 年。
    10.. 黃文昇,「在網際網路的旅遊業經營型態」,國立台灣大學商學研
    究所碩士論文, 1998 年。
    11.. 鄭昭敏,「航空公司哩程累計酬賓計劃與顧客忠誠度關係行銷之
    研究」, 國立台灣大學商學研究所碩士論文, 1996 年。
    網站部分:
    1 .. www.. c hii na - a ii r ll ii ne s .. c om
    2 .. www.. e va a ii r.. com
    3 .. www.. c a tt ha y pa c ii f ii c .. c om
    4 .. www.. s iin ga p or e a ii r.. com
    5 .. www.. o n ewo r ll d .. c om
    6 .. www.. s tt a r a ll ll ii a nc e .. com
    7 .. www.. s k ytt e am.. c om
    8 .. www.travelocity.com
    9 .. www.priceline.com
    1 0 .. www.orbitz.com
    1 1 .. www.. ll a s ttmii n u tt e s .. com
    描述: 碩士
    國立政治大學
    經營管理碩士學程(EMBA)
    90932603
    92
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0090932603
    資料類型: thesis
    顯示於類別:[經營管理碩士學程EMBA] 學位論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    93260300.pdf48KbAdobe PDF2668檢視/開啟
    93260301.pdf239KbAdobe PDF2723檢視/開啟
    93260302.pdf120KbAdobe PDF2716檢視/開啟
    93260303.pdf1069KbAdobe PDF2824檢視/開啟
    93260304.pdf248KbAdobe PDF21023檢視/開啟
    93260305.pdf317KbAdobe PDF21042檢視/開啟
    93260306.pdf544KbAdobe PDF22929檢視/開啟
    93260307.pdf1016KbAdobe PDF21338檢視/開啟
    93260308.pdf246KbAdobe PDF2910檢視/開啟
    93260309.pdf295KbAdobe PDF2838檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋