English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114205/145239 (79%)
Visitors : 52395641      Online Users : 718
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 資訊管理學系 > 學位論文 >  Item 140.119/35231
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/35231


    Title: 選擇商業應用資料探勘方法之框架
    A Framework for Selecting Data Mining Method in Business Application
    Authors: 陳庭鈞
    Chen,Tin Jiun
    Contributors: 諶家蘭
    季延平

    Seng,Jia Lang
    Chi,Yen Ping

    陳庭鈞
    Chen,Tin Jiun
    Keywords: 資料探勘
    商業應用
    選擇方法
    資料探勘演算法
    Data mining
    Business application
    Selection method
    Data mining algorithm
    Date: 2005
    Issue Date: 2009-09-18 14:30:17 (UTC+8)
    Abstract: 由於資訊科技的進步與網路的普及,企業得以收集與儲存大量的資料。使用資訊工具來協助資料處理、資訊擷取、以及產生知識已然變成企業的重要課題之一,所以如何良好運用資料探勘工具成為使用者關注的焦點。由於並非每一個使用者對於資料探勘的原理都有充分的了解,所以如何從探勘工具提供的功能中選用最佳的解決方案並不容易。如果對於探勘結果不滿意而需要調整軟體邏輯,與IT人員的協商溝通卻又曠日費時。

    為了解決這個問題,本研究提出一個演算法選擇方法,藉由分析商業應用的內容,來自動對應到特定的資料探勘方法與演算法,讓選擇演算法的過程更為快速、更系統化,提升利用資料探勘工具解決商業問題的效率。
    Due to the information technology improvement and the growth of internet, companies are able to collect and to store huge amount of data. Using data mining technology to aid the data processing, information retrieval and knowledge generation process has become one of the critical missions to enterprise, so how to use data mining tools properly is users’ concern. Since not every user completely understand the theory of data mining, choosing the best solution from the functions which data mining tools provides is not easy. If user is not satisfied with the outcome of mining, communication with IT employees to adjust the software costs lots of time.

    To solve this problem, a selection model of data mining algorithms is proposed. By analyzing the content of business application, user’s requirement will map to certain data mining category and algorithm. This method makes algorithm selection faster and reasonable to improve the efficiency of applying data mining tools to solve business problems.
    Reference: 1. Agrawal, R., Imielinski, T. and Swami, A. (1993, May). Mining association rules between sets of items in large databases. SIGMOD, Washington.
    2. Ahmed, S. R. (2004). Applications of Data Mining in Retail Business. Proceedings of the International Conference on Information Technology: Coding and Computing.
    3. Ahn, J. H., and Ezawa, K. J. (1997). Decision support for eeal-time telemarketing operations through bayesian network learning, Decision Support Systems. 21, 17-27
    4. Ahn, J. Y., Kim S. K. and Han, K. S. (2003). On the design concepts for CRM systems. Industrial Management and Data System. 103(5), 324-331.
    5. Anand, S. S., Patrick, A. R., Hughes, J. G., and Bell, D. A. (1998). A data mining methodology for cross-sales. Knowledge-Based Systems. 10, 449-461.
    6. Apte, C., Liu, Bing, Pednault, E. P. D. and Smyth P. (2002). Business applications of data mining. Communications of the ACM archive. 45(8), 49-53.
    7. Arshadi, N. and Jurisica, I. (2005). Data mining for case-based reasoning in high-dimensional biological domains. IEEE transactions on knowledge and data engineering. 17(8), 1127-1137.
    8. Bansal, K., Vadhavkar, S. and Gupta, A. (1998). Neural Networks Based Data Mining Applications for Medical Inventory Problems. International Journal of Agile Manufacturing, 1(2), 187-200.
    9. Berry, M. J. A. and Linoff G. (1997). Data mining techniques: for marketing, sales, and customer support. John Wiley & Sons Press.
    10. Bose, R. (2006). Intelligent technologies for managing fraud and identify Theft. Proceedings of the Third International Conference on Information Technology: New Generation. 446-451.
    11. Bose, R. (2002). Customer relationship management: key components for IT success. Industrial Management & Data Systems. 102(2), 89-97.
    12. Brachman, R. J., Khabasa, T., Kloesgen, W., Piatetsky-Shapiro, G., and Simoudis, E. (1996). Mining business database. Communication of ACM. 39(11), 42-48.
    13. Brause, R., Langsdorf, T. and Hepp, M. (1999). Neural Data Mining for Credit Card Fraud Detection. Proceedings of the 11th IEEE International Conference on Tools with Artificial Intelligence, Chicago. 103-106
    14. Chan, P. K., Fan, W., Prodromidis, A. L. and Stolfo, S.J. (1999). Distributed data mining in credit card fraud detection. Intelligent Systems and Their Applications. 14(6), 67-74
    15. Chaudhuri, S. and Dayal, U. (1997, March). An overview of data warehousing and OLAP technology. ACM SIGMOD Record. 26(1), 65 – 74.
    16. Chen, M. S., Han, J. and Yu, P. S. (1996). Data mining: an overview from database perspective. IEEE Transactions on Knowledge and Data Engineering. 8(6), 866-883
    17. Chen, R. S., Wu, R. C. and Chen J. Y. (2005) Data mining application in customer relationship management of credit card business. Proceedings of the 29th Annual International Computer Software and Applications Conference (COMPSAC’05). 2, 39-40.
    18. Chen, Y. and Hu, L. (2005). Study on data mining application in CRM system based on insurance trade. Proceedings of the 7th international conference on electronic commerce, Xi`an, China. 839-841.
    19. Davidson, A. and Simonetto, M., (2005). Pricing strategy and execution: an overlooked way to increase revenues and profits. STRATEGY & LEADERSHIP. 33(6), 25-33.
    20. Emili, T. A., (2004). Cost Efficiency and Product Mix Clusters across the Spanish Banking Industry. Review of Industrial Organization. 20, 163-181.
    21. Farquhar, J. D. (2004). Customer retention in retail, financial services: an employee perspective. The International Journal of Bank Marketing. 22(2), 86-99.
    22. Fayyad, U., Piatetsky-Shapiro, G. and Smyth, P. (1996). The KDD process for extracting useful knowledge from volumes of data. COMMUNICATIONS OF THE ACM. 39(11), 27-34
    23. Fayyad, U., Piatetsky-Shapiro, G., Smyth, P., and Uthurusamy, R. (1996). Advances in knowledge discovery and data dining. Cambridge: AAAI/MIT Press.
    24. Ferdousi, Z. and Maeda, A. (2006). Unsupervised outlier detection in time series data. Proceedings of the 22nd International Conference on Data Engineering Workshops (ICDEW`06). 51-56.
    25. Fish, K. E. and Segall, R. S. (2004) A visual analysis of learning rule effects and variable importance for neural networks in data mining operations. Kybernetes. 33(7), 1127-1142
    26. Forcht, K. A. and Cochran, K. (1999). Using data mining and datawarehousing techniques. Industrial Management & Data Systems. 99(5), 18-19.
    27. Gardner, M. and Bieker, J. (2000). Data mining solves tough semiconductor manufacturing problems. Conference on Knowledge Discovery in Data, Boston. ACM Press, 376 – 383.
    28. Gargano, M. L. and Raggad, B. G. (1999). Data mining – a powerful information creating tool. OCLC Systems & Services. 15(2), 81-90.
    29. Gavrilov, M., Anguelov, D., Indyk, P. and Motwani, R. (2000). Mining The Stock Market: Which Measure Is Best ?. Conference on Knowledge Discovery in Data, Boston, MA USA. 487-496.
    30. Goebel, M. and Gruenwald, L. (1999). A survey of data mining and knowledge discovery software tools. ACM SIGKDD Explorations Newsletter. 1(1), 20-33.
    31. Han, J. and Kamber, M. (2001). Data mining: concepts and techniques. Academic Press.
    32. Lee, S. J. and Siau, K. (2001). A review of data mining techniques. Industrial Management & Data Systems. 101(1), 41-46.
    33. Lee, T. S., Chiu C. C., Chou, Y. C. and Lu, C. J. (2006). Mining the customer credit using classification and regression tree and multivariate adaptive regression splines. Computational Statistics & Data Analysis. 50, 1113-1130.
    34. Lejeune, M. A. P. M. (2001). Measuring the impact of data mining on churn management. Internet Research: Electronic Networking Applications and Policy. 11(5), 375-387.
    35. Lim, T. S., Loh, W. Y., and Shih, Y. S. (2000). A Comparison of Prediction Accuracy, Complexity, and Training Time of Thirty-Three Old and New Classification Algorithms. Machine Learning. 40, 203-228.
    36. Lu, H. J., Feng, L., and Han, J. (2000). Beyond intratransaction association analysis- mining multidimensional intertransaction association rules. ACM Transactions of Information Systems. 18(4), 423-454.
    37. Lu, H. J., Han, J., and Feng, L. (1998). Stock movement prediction and N-dimensional inter-transaction association rules. ACM SIGMOD Workshop on Research Issues on Data Mining and Knowledge Discovery, Seattle. 12.1-12.7.
    38. Mannila, H. (2000). Theoretical Frameworks for Data Mining. ACM SIGKDD Explorations Newsletter. 1(1), 30-32.
    39. Min, Hokey, Min, Hyesung, and Emam, Agmed. (2002). A data mining approach to developing the profiles of hotel customers. International Journal of contemporary Hospitality Management. 14(6), 274-285.
    40. Netessine S., Savin, S., and Xiao w. (2004) Revenue Management through Dynamic Cross-Selling in E-commerce Retailing. Working paper.
    41. Piatetsky-Shapiro, G. and Frawley W. J. (1991). Knowledge discovery in databases. AAAI/MIT Press.
    42. Pitta, D., A. (1998). Marketing one-to-one and its dependence on knowledge discovery in databases. Journal of Consumer Marketing. 15(5), 468-480.
    43. Pritscher, L. and Feyen, L (2001). Data Mining And Strategic Marketing In The Airline Industry. Data Mning FOR Marketing Applications.
    44. Povinelli, R. J. and Feng. X. (1999). Data mining of multiple nonstationary time series. Proceedings of Artificial Neural Networks in Engineering. St. Louis, Missouri, 511-516.
    45. Silberschatz, A., Stonebraker, M., and Ullman, J. (1995). Database research: Achievements and opportunities into the 21st century. SIGMOD Record. 25(1), 52-63.
    46. Spangler, W. E., Gal-Or, M., and May J. H. (2003). Using data mining to profile TV viewers. Communication of ACM. 46(12), 67-72.
    47. Vellido, A., Lisboa, P. J. G. and Vaughan, J. (1999). Neural network in business: a survey of applications (1992-1998). Expert Systems with Applications. 17, 51-70.
    48. West, D. (2000). Neural network credit scoring models. Computers & Operations Research. 27, 1131-1152.
    49. William, E. S., Mordechai, G. O. and Jerrold, H. M. (2003). Using data mining to profile TV viewers. Communication of the ACM. 46(12), 67-72.
    50. 洪順慶(2001)。行銷管理。第二版。台北,新陸書局。
    Description: 碩士
    國立政治大學
    資訊管理研究所
    93356031
    94
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0093356031
    Data Type: thesis
    Appears in Collections:[資訊管理學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    35603101.pdf118KbAdobe PDF2807View/Open
    35603102.pdf12KbAdobe PDF2662View/Open
    35603103.pdf60KbAdobe PDF2909View/Open
    35603104.pdf95KbAdobe PDF2691View/Open
    35603105.pdf92KbAdobe PDF2668View/Open
    35603106.pdf92KbAdobe PDF2694View/Open
    35603107.pdf105KbAdobe PDF21065View/Open
    35603108.pdf226KbAdobe PDF213301View/Open
    35603109.pdf283KbAdobe PDF2901View/Open
    35603110.pdf223KbAdobe PDF2780View/Open
    35603111.pdf117KbAdobe PDF2963View/Open
    35603112.pdf98KbAdobe PDF2646View/Open
    35603113.pdf103KbAdobe PDF2657View/Open
    35603114.pdf159KbAdobe PDF2902View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback