Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/35223
|
Title: | 語意式構思學習模式於協同式腦力激盪決策 Semantic Ideation Learning for Collective Brainstorming |
Authors: | 陳延全 Chen,Yen-Chuan |
Contributors: | 苑守慈 Yuan, Soe-Tsyr 陳延全 Chen,Yen-Chuan |
Keywords: | 智慧型代理人 腦力激盪法 增強式學習 Intelligent Agent Brainstorming Reinforcement Learning |
Date: | 2005 |
Issue Date: | 2009-09-18 14:29:14 (UTC+8) |
Abstract: | 「知識經濟」時代下,知識汰舊換新速度極快,單打獨鬥不及於團隊合作的成效,因此,不論組織或個人均須講求團隊合作。腦力激盪法(Brainstorming)即是透過團隊合作、協同決策的方式產生具有創意的解決方案。本研究結合智慧型代理人的技術與人類獨特的腦力激盪思考方式,利用智慧型代理人的自主性、溝通能力、適應力與學習能力等特性,讓智慧型代理人能在適當的時候代替腦力激盪會議的與會者出席會議,達成會議目標。為了讓智慧型代理人也能模仿人類進行創意思考,本研究以人類主要用來產生創意構思的三種聯想能力做為代理人之推論機制,並結合增強式學習的概念,設計出能根據以本體論表達之概念(Ontology-Based Concept)進行構思激盪之語意式構思學習代理人( Semantic Ideation Learning Agent,SILA ),並架構一個能讓多個SILA進行知識分享與學習的系統環境-腦力激盪式協同決策系統(Collective Brainstorming Decision System, CBDS)。本研究以傳統的腦力激盪決策模式為基礎,結合現代之網路語意表達與代理人技術,期望讓在網路上代表不同角色、身份的代理人,基於其所擁有之構思知識庫 (Idea Knowledge Base),透過代理人之間的溝通與知識分享,達成代理人自動化協同決策(Collective Decision)之目標。 In Knowledge Economy Era, the organization and individual are emphasizing on the teamwork instead of single play because of better effectiveness. Brainstorming is a solution that can help organization to generate creative ideas through teamwork and collaboration. This research combines human’s unique brainstorming thinking and the intelligent agent technique for devising an automated decision agent called Semantic Ideation Learning Agent (SILA) (that can represent a session participant to engage the action of brainstorming). In order to make a SILA thinking like human, our research presents a method of Reinforcement Learning grounded on three capabilities of human’s association (similarity, contiguity, contrast) as the SILA’s inference mechanism. Furthermore, the Collective Brainstorming Decision System was build to provide an environment where SILAs can learn and share their knowledge. The aim of this research is to reach automatic collective decision in a brainstorming session through the collaboration of the agents based on the brainstorming decision model and some modern information techniques including knowledge base, semantic web and intelligent agents. |
Reference: | 1. 林隆儀譯(1984),J. Geoffrey Rawlinson著,“創造性思考與腦力激盪法”,清華管理科學圖書中心,臺北市,第1版。 2. 李魁元(2002),“具灰色效能評斷單元之加強式學習架構”, 國立中正大學電機工程學系碩士論文,民國91年。 3. 施乃華(2001),“創造思考教學成效之後設分析”,彰化師範大學商業教育學所碩士論文,民國90年。 4. 許維德(1999),“在同步雙邊拍賣市場中代理人競標策略之學習”,國立清華大學資訊工程研究所碩士論文,民國88年。 5. 陳天亮(1993),“群體軟體支援腦力激盪之績效評估”,國立中山大學資訊管理研究所碩士論文,民國82年。 6. 陳俊隆(1999),“一個以多代理人為基礎之智慧型教學代理人”,逢甲大學資訊工程研究所碩士論文,民國88年。 7. 連英惠(2001),“智慧型旅遊路線排程系統”,靜宜大學資訊管理學研究所碩士論文,民國90年。 8. 黃淑惠(2002),“國小視覺藝術創造思考課程與教學之研究”,屏東師範學院視覺藝術教育研究所碩士論文,民國91年。 9. 葉美伶(2004),“無線點對點之適境化雙贏協商機制”,輔仁大學資訊管所研究所碩士論文,民國93年。 10. 詹瓊華(2003),“高中家政課程實施創造思考教學之成效”,國立臺灣師範大學人類發展與家庭研究所碩士論文,民國92年。 11. 蒲怡靜(2003),“電子腦力激盪術於設計創意值之研究”,國立成功大學工業設計研究所碩士論文,民國92年。 12. 劉佳麟(2003),“電子腦力激盪對學習成效之研究”,國立台北科技大學商業自動化與管理研究所碩士論文,民國92年。 13. 劉昕鵬(2003),“Ontology 理論研究和應用建模——《Ontology 研究綜述》、w3c Ontology 研究組文檔以及Jena 編程應用總結”,28 March 2003 14. 鄭寶庭(2003),“使用語意認知機制建置資源調配管理系統之研究”,中原大學資訊管理研究所碩士論文,民國92年。 15. Borst, P., Akkermans, H. and Top, J. (1997), “Engineering Ontologies,” International Journal of Human-Computer Studies 46, 365-406, 1997. 16. Chang, Wei-Lun and Yuan, Soe-Tsyer (2005), “Ambient iCare e-Services for Quality Aging: Framework and Roadmap,” 7-th International IEEE Conference on E-Commerce Technology 2005, July, 19-22, Munich, Germany. 17. Dennis, A. R., Aronson, J. E., Heninger, W. G., E, Walker II, E. D. (1999), “Structuring Time and Task in Electronic Brainstorming,” MIS Quarterly 23(1). 18. Dietterich, T. G. (2000), “An Overview of MAXQ Hierarchical Reinforcement Learning,” In B. Y. Choueiry and T. Walsh (Eds.) Proceedings of the Symposium on Abstraction, Reformulation and Approximation SARA 2000, Lecture Notes in Artificial Intelligence (pp. 26-44), New York: Springer Verlag 19. Dietterich, T. G. (2003), “Learning and Reasoning,” Technical report, School of Electrical Engineering and Computer Science, Oregon State University, 2003. 20. Farquhar, A., Fikes, R. & Rice, J. (1997), “Tools for assembling modular ontologies in Ontolingua,” In Proc. of Fourteenth American Association for Artificial Intelligence Conference(AAAI-97), Menlo Park, CA, AAAI/MIT Press, 436–441. 21. Glorennec, P. Y. (2000), “Reinforcement Learning: an Overview,” ESIT 2000, Aachen, Germany. 22. Gruber, T.R. (1993), “A Translation Approach to Portable Ontologies,” Knowledge Acquisition 5(2), 1993, 199-220. 23. Guarino, N. & Welty, C. (2001), “Supporting Ontological Analysis of Taxonomic Relationships,” Data and Knowledge Engineering 39(1), 51-74. 24. Impulse Research Corporation (2003), “Conferencing Technologies Save Time and Money,” Published: October 21, 2003. http://www.find.org.tw//0105/news/0105_news_disp.asp?news_id=2868 25. Murnughan, J.K. (1981), “Group Decision Making”. 26. Kay,G. (1995), “Effective Meetings Through Electronic Brainstorming,” Management Quarterly, Vol.35, No.4, pp.15-26. 27. Kaelbling, L. P., Littman, M. L., and Moore, A. W. (1996), “Reinforcement learning: A survey,” J. Artif. Intell. Res., no. 4, pp. 237–285, May 1996. 28. Noy, N. F., McGuinness, D. L. (2001), “Ontology Development 101: A Guide to Creating Your First Ontology,” Stanford Knowledge Systems Laboratory Technical Report KSL-01-05. March 2001. 29. Osborn, A.F. (1953), “Applied Imagination : principles and procedures of creative problem-solving,” New York: Scribner’s. 30. Scott G Isaksen (1998), “A Review of Brainstorming Research: Six Critical Issues for Inquirys,” Monograph #302 (Buffalo, NY: Creative Problem Solving Group, 1998): 11–12. 31. Stacey, R.D. (1999), “Strategic Management and Organizational Dynamics: the Challenge of Complexity,” New York: Financial Times Prentice Hall. 32. Sutton, R. S. (1996), “Generalization in Reinforcement Learning: Successful Examples Using Sparse Coarse Coding,” Advances in Neural Information Processing System 8, pp. 1038-1044, MIT Press. 33. Sutton, R. S., Barto, A. G. (1998), “Reinforcement Learning: An Introduction,” Cambridge, MA: MIT Press. 34. Tsitsiklis, John N. (1994), “Asynchronous stochastic approximation and Q-learning. Machine Learning,” 1994, 16(3):185-202. |
Description: | 碩士 國立政治大學 資訊管理研究所 93356017 94 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0093356017 |
Data Type: | thesis |
Appears in Collections: | [資訊管理學系] 學位論文
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|