政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/34184
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 113873/144892 (79%)
造访人次 : 51927924      在线人数 : 399
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    政大機構典藏 > 商學院 > 會計學系 > 學位論文 >  Item 140.119/34184


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/34184


    题名: 企業財務危機預警模型之建構-以類神經網路為工具
    作者: 楊謹瑜
    贡献者: 馬秀如
    楊謹瑜
    关键词: 倒傳遞網路
    財務危機
    公司治理
    日期: 2007
    上传时间: 2009-09-18
    摘要: 由於財務報表資訊易遭管理當局操縱,因此財務預警模型若僅考慮財務比率變數,即有其限制。本研究因此結合財務比率變數與公司治理變數,以期建構更良好的財務預警模型。此外,本研究使用倒傳遞網路為工具,以避免前述限制,並預期結果顯示綜合採用財務比率及公司治理二類變數,在預測期間短時,所建立的財務預警模型,其錯誤率的確較低。本研究同時發現,樣本公司中的危機公司大多屬於「急速失敗公司」。
    Early warning models used to predict financial distresses of corporations confront with limitation, when the model specification consider only financial ratios based on financial statements, because of the possibility of manipulated financial statements. This study intends to construct a early warning model with not only financial ratio variables, but also corporate governance variables. The corporate governance variables may affect the corporation with financial distresses dramatically. This study constructs a new early warning model, considering the two kinds of variables, both financial ratio and corporate governance, and improves the predictability of sample firms of the one-quarter period. The study shows that Back Propagation Neural Network model can learn from the data of failed corporations and a matched group of survivor firms and hence predict the financial distresses. The study also finds the sample failed corporations are more likely to be “acute failure” ones.

    Keyword: BPN, Corporate Governance, Financial Distresses.
    參考文獻: 參考文獻
    一、 中文部分
    1. 呂紹強, 2000,企業財務危機預警模型之研究-以財務及非財務因素建構,當代會計,第一卷,第一期:p19-40
    2. 柯承恩,2000,我國公司監理體系之問題與改進建議(上) (下),會計研究月刊,173期:p74-81;174期:p79-83
    3. 郭瓊宜,1994,類神經網路在財務危機預警模式之應用,私立淡江大學管理科學研究所未出版碩士論文。
    4. 蔡秋田,1995,運用類神經網路預測上市營運困難之研究,國立成功大學會計研究所未出版碩士論文。
    5. 葉怡成,1999,應用類神經網路,台北;儒林圖書有限公司。
    6. 葉銀華、李存修與柯承恩,2002,公司治理與評等系統,台北:商智文化。
    7. 蘇文娟,1999,台灣上市企業財務危機預測之實證研究,國立東華大學國際經濟研究所未出版碩士論文。
    二、 英文部分
    1. Altman, E.1968.Financial Ratios, Discriminate Analysis and the Predictions of Corporate Bankruptcy. Journal of Finance(September).23(4). pp. 589-609.
    2. Altman, E., G. Marco and F. Varetto.1994.Corporate Distress Doagnosis: Comparisons Using Linear Discriminant Analysis and Neural Networks. Journal of Banking and Finance. pp. 505-529.
    3. Beaver, W. H.1966.Financial Ratios as Predictors of Failure. Journal of Accounting Research (Fall).4(3). pp. 71-111.
    4. Blum, M. 1974.Failing Company Discriminant Analysis. Journal of Accounting Research (Spring). pp. 1-25.
    5. Coats, P. K. and L.F. Fant.1993.Recognizing Financial Distress Patterns Using a Neural Network Tool. Financial Management (Autumn).22(3). pp. 142-155.
    6. Daily, C. M. and D.R.Dalton.1994.Bankruptcy and Corporate Governance: The Impact of Board Composition and Structure. Academy of Management Journal. 37(6). pp. 1603-1617.
    7. Jensen, M.C. and W.H.Meckling.1976.Theory of the Firm: Managerial Behavior, Agency Costs and Ownership Structure. Journal of Financial Economics .3(4). pp. 305-360.
    8. Laitinen. E. K. and T. Laitinen .1980.Cash Management Behavior And Failure Prediction. Journal of Business Finance and Accounting
    Research (Sep). pp. 613-630.
    9. Lee, K., D. Booth, and P.Alam.2005.A comparison of supervised and unsupervised neural networks in predicting bankruptcy of Korean firms. Expert Systems with Applications. 29(1). pp. 1-16.
    10. Odom, J.A. and R.Sharda.1990.A Neural Networks for Bankruptcy Prediction. IEEE INNS International Joint Conference on Neural Networks . 2(17-21). pp. 163-168.
    11. O’Leary, D.E. 1998. Using neural networks to predict corporate failure. International Journal of Intelligent Systems in Accounting, Finance & Management. Vol. 7. pp. 187-197.
    12. Lee, T.S. and Y.H.Yeh.2004.Corporate Governance and Financial Distress : evidence from Taiwan. Corporate Governance and Financial Distress. 12(3). pp. 378-388.
    13. Ward, T. J. and B.P. Foster.1996. An Empirical Analysis of Thomas’s Financial Accounting Allocation Fallacy Theory in a Financial Distress Context. Accounting & Business Research. 26(2). pp. 137-152.
    描述: 碩士
    國立政治大學
    會計研究所
    90353008
    96
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0090353008
    数据类型: thesis
    显示于类别:[會計學系] 學位論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    35300801.pdf70KbAdobe PDF2824检视/开启
    35300802.pdf95KbAdobe PDF2912检视/开启
    35300803.pdf62KbAdobe PDF2827检视/开启
    35300804.pdf13KbAdobe PDF2778检视/开启
    35300805.pdf122KbAdobe PDF2781检视/开启
    35300806.pdf212KbAdobe PDF21139检视/开启
    35300807.pdf566KbAdobe PDF22015检视/开启
    35300808.pdf251KbAdobe PDF21825检视/开启
    35300809.pdf220KbAdobe PDF2900检视/开启
    35300810.pdf207KbAdobe PDF2962检视/开启
    35300811.pdf163KbAdobe PDF2901检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈