English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114205/145239 (79%)
Visitors : 52584928      Online Users : 1052
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 資訊學院 > 資訊科學系 > 學位論文 >  Item 140.119/32647
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/32647


    Title: 以減少測量數為目標之無線網路定位系統
    Reducing Calibration Effort for WLAN Location and Tracking System
    Authors: 李政霖
    Li, Cheng-Lin
    Contributors: 蔡子傑
    Tsai, Tzu-Chieh
    李政霖
    Li, Cheng-Lin
    Keywords: 無線網路定位系統
    無線訊號傳遞模型
    學習模型
    自我相關度
    Indoor Locating System
    Wireless Channel Propagation Model
    Learning Model
    Autocorrelation
    Date: 2005
    Issue Date: 2009-09-17 13:55:50 (UTC+8)
    Abstract: 內容感知的應用在今日已經變的越來越熱門,而位置資訊的可知也因此衍生出許多研究的議題。這篇論文提出了一套精準的室內無線網路系統名為Precise Indoor Location System (PILS)。大部分擁有良好定位精準度的定位系統都必須在事情花費許多的人力在收集大量的訊號上面,使得定位系統的變的不實用與需求過多的人力資源。在這篇論文裡,我們將目標放在減少在建置訊號地圖上的人力資源耗費並且保持住定位系統的精準度在一個可以接受的範圍。我們也提出了在資料收集上、訊號內插上、以及位置估計上的模型。另外我們也考慮了一連串連續訊號的相關度來提高準確度。無線網路訊號傳遞的特性也是我們研究的一部份,大小範圍的遮蔽包含在我們所研究的訊號傳遞現象裡面。最後我們提出了一套學習的模型來調整我們的訊號地圖,以改進因為測量數目的減少所造成的精準度下降。
    Context-aware applications become more and more popular in today’s life. Location-aware information derives a lot of research issues. This thesis presents a precise indoor RF-based WLAN (IEEE 802.11) locating system named Precise Indoor Locating System (PILS). Most proposed location systems acquire well location estimation results but consume high level of manual efforts to collect huge amount of signal data. As a consequence, the system becomes impractical and manpower-wasted. In this thesis, we aim to reduce the manual efforts in constructing radio map and maintain high accuracy in our system. We propose the models for data calibration, interpolating, and location estimation in PILS. In the data calibration and location estimation models, we consider the autocorrelation of signal samples to enhance accuracy. Large scale and small scale fading are involved in the wireless channel propagation model. We also propose a learning model to adjust radio map for improving the accuracy down caused by calibrated data reduction.
    Reference: [1] A. Papoulis, “Probability, Random Variables, and Stochastic Processes”, McGraw-Hill, third edition, 1991.
    [2] Ali Taheri Arvinder Singh Emmanuel Agu, “Location Fingerprinting on Infrastructure 802.11Wireless Local Area Networks (WLANs) using Locus”, Proceedings of the 29th Annual IEEE International Conference on Local Computer Networks (LCN’04).
    [3] Andreas Haeberlen, Eliot Flannery, Andrew M. Ladd, Algis Rudys, Dan S. Wallach, Lydia E. Kavraki, “Practical Robust Localization over Large-Scale 802.11 Wireless Networks”, MobiCom’04, Sept. 26-Oct. 1, 2004, Philadelphia, Pennsylvania, USA.
    [4] Ankur Agiwal, Parakram Khandpur, Huzur Saran, “LOCATOR - Location Estimation System For Wireless LANs”, WMASH’04, October 1, 2004, Philadelphia, Pennsylvania, USA.
    [5] Asim Smailagic and David Kogan, “Locating Sensing and Privacy In a Context-Aware Computing Environment”, in IEEE Wireless Communications, no. 5, Oct 2002, pp.10-17.
    [6] H. Hashemi, “The indoor radio propagation channel. In Proceedings of the IEEE”, volume 81, pages 943–968, 1993.
    [7] Isaac K Adusei and K.Kyamakya and Klaus Jobmann, “Mobile Positions Technologies in Cellular Networks: An Evaluation of their Performance Metrics”, in MILCOM 2002, Oct 2002, pp. 1239-1244.
    [8] J. Krumm and J. C. Platt, “Minimizing calibration effort for an indoor 802.11 device location measurement system”, Technical report, Microsoft Research, 2003.
    [9] Jon W. Mark, and Weihua Zhuang, “Wireless Communications and Networking”, Prentice Hall, 2003.
    [10] L. R. Rabiner, “A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition”, Proceedings of the IEEE, vol. 77, No. 2, February 1989
    [11] L. R. Rabinerand B. H. Juang, (1993) Fundamentals of Speech Recognition, Chapter 6
    [12] Ming-Hui Jin, Eric Hsiao-Kuang Wu, Yu-Ting Wang, Chin-Hua Hsu, “802.11-based Positioning System for Context Aware Applications”, Globecom2003.
    [13] Ming-Hui Jin, Eric Hsiao-Kuang Wu, Yu-Ting Wang, Chin-Hua Hsu, “An 802.11-based Positioning System for Indoor Applications”, ACTA Press Proceeding (422) Communication Systems and Applications - 2004
    [14] Moustafa A. Youssef, Ashok Agrawala, A. Udaya Shankar, “WLAN Location Determination via Clustering and Probability Distributions”, in IEEE PerCom’03.
    [15] Moustafa Youssef and Ashok Agrawala, “The Horus WLAN Location Determination System” , ACM International Conference On Mobile Systems, Applications And Services Proceedings of the 3rd international conference on Mobile systems, applications, and services.
    [16] Moustafa Youssef and Ashok Agrawala, “Handling Samples Correlation in the Hours System”, IEEE Infocom2004.
    [17] Moustafa Youssef, Mohamed Abdallah, Ashok Agrawala, “Multivariate Analysis for Probabilistic WLAN Location Determination Systems”, IEEE MobiQuitous’05.
    [18] M. berna, B. Lisien, B. Sellner, G. Gordon, F. Pfenning, and S. Thrun, “A learning algorithm for localizing people based on wireless signal strength that uses labeled and unlabeled data”, in IJCAI’03, Acapulco, Mexico, August 2003.
    [19] Nissanka B. Priyantha, Anit Chakraborty, Hari Balakrishnan, “The Cricket Location-Support system,” Proc. 6th ACM MOBICOM, Boston, MA, August 2000
    [20] Nissanka B. Priyantha, Allen Miu, Hari Balakrishnan, Seth Teller, “The Cricket Compass for Context-Aware Mobile Applications”, Proc. 7th ACM MOBICOM, Rome, Italy, July 2001
    [21] Paramvir Bahl and Venkata N.Padmanabhan, ”RADAR: An In-Building RF-based User Location and Tracking System”, in IEEE INFOCOM 2000, Mar 2000, pp. 775-784.
    [22] P. Bahl, A. Balachandran, and V. Padmanabhan , “Enhancements to the RADAR user location and tracking system” ,Technical report, Microsoft Research, February 2000.
    [23] S. Luhr, H.H. Bui, S. Venkatesh, and G.A. West, “Recognition of human activity through hierarchical stochastic learning”, in First IEEE International Conference on Pervasive Computing and Communications, March 2003.
    [24] T. Roos, P. Myllymaki, H. Tirri, P. Misikangas, and J. Sievanen, “A probabilistic approach to WLAN user location estimation”, International Journal of Wireless Information Networks, 9(3):155–164, July 2002.
    [25] Tzu-Chieh Tsai, S-H Kao, and C-L Li, “In-building 802.11b Locating System Based on Wireless Channel Propagation Models”, in 10th Mobile Computing Workshop, 2004.
    [26] Tzu-Chief Tsai, Cheng-Lin Li, Tsung-Ming Lin, “Reducing Calibration Effort for WLAN Location and Tracking System using Segment Technique”, IEEE AHUC2006.
    [27] Wenye Wang and Ian F. Akyildiz, “On the Estimation of User Mobility Pattern for Location Tracking in Wireless Networks”, in GLOBECOM 2002, Nov 2002, pp. 619-623.
    [28] X. Huang et. al., (2001) Spoken Language Processing, Chapter 8
    [29] Xiaoyong Chai and Qiang Yang, “Reducing the calibration Effort for Location Estimation Using Unlabeled Samples”, Proceedings of the 3rd IEEE Int’l Conf. on Pervasive Computing and Communications (PerCom 2005).
    Description: 碩士
    國立政治大學
    資訊科學學系
    93753003
    94
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0093753003
    Data Type: thesis
    Appears in Collections:[資訊科學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    75300301.pdf44KbAdobe PDF2776View/Open
    75300302.pdf61KbAdobe PDF2789View/Open
    75300303.pdf21KbAdobe PDF2659View/Open
    75300304.pdf502KbAdobe PDF2797View/Open
    75300305.pdf139KbAdobe PDF2785View/Open
    75300306.pdf259KbAdobe PDF2819View/Open
    75300307.pdf451KbAdobe PDF2797View/Open
    75300308.pdf831KbAdobe PDF2889View/Open
    75300309.pdf583KbAdobe PDF2890View/Open
    75300310.pdf22KbAdobe PDF2692View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback