政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/32605
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 114205/145239 (79%)
造访人次 : 52609130      在线人数 : 838
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    政大機構典藏 > 理學院 > 應用數學系 > 學位論文 >  Item 140.119/32605


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/32605


    题名: 由選擇權市場價格建構具一致性之評價模型
    Building a Consistent Pricing Model from Observed Option Prices via Linear Programming
    作者: 劉桂芳
    Liu, Kuei-fang
    贡献者: 劉明郎
    Liu, Ming-long
    劉桂芳
    Liu, Kuei-fang
    关键词: 評價選擇權
    風險中立機率測度
    等價平賭測度
    線性規劃
    options pricing
    risk-neutral probability measure
    equivalent martingale measure
    linear programming
    日期: 2004
    上传时间: 2009-09-17 13:50:05 (UTC+8)
    摘要: 本論文研究如何由觀測的選擇權市場價格還原風險中立機率測度(等價平賭測度)。首先建構選擇權投資組合的套利模型,其中假設選擇權為單期,到期日時的狀態為離散點且個數有限,並且對應同一標的資產且不同履約價格。若市場不存在套利機會時,可使用拉格朗日乘數法則將選擇權套利模型導出拉格朗日乘子的可行性問題。將可行性問題作為限制式重新建構線性規劃模型以還原風險中立機率測度,並且利用此風險中立機率測度評價選擇權的公正價格。最後,我們以台指選擇權(TXO)為例,驗證此模型的評價能力。
    This thesis investigates how to recover the risk-neutral probability (equivalent martingale measure) from observed market prices of options. It starts with building an arbitrage model of options portfolio in which the options are assumed to be in one-period time, finite discrete-states, and corresponding to the same underlying asset with different strike prices. If there is no arbitrage opportunity in the market, we can use Lagrangian multiplier method to obtain a Lagrangian multiplier feasibility problem from the arbitrage model. We employ the feasibility problem as the constraints to construct a linear programming model to recover the risk-neutral probability, and utilize this risk-neutral probability to evaluate the fair price of options. Finally, we take TXO as an example to verify the pricing ability of this model.
    參考文獻: Black, F. and M. Scholes (1973), “Pricing of Options and Corporate Liabilities.” Journal of Political Economy 81(3), 637-659.
    Churchill, R. V. (1963), “Fourier Series and Boundary Value Problems.” 2nd ed. New York, McGraw-Hill.
    Cox, J. and S. Ross (1976), “The Valuation of Options for Alternative Stochastic Processes.” Journal of Financial Economics 3, 145-166.
    Cox, J., S. Ross, and M. Rubinstein (1979), “Option Pricing: A Simplified Approach.” Journal of Financial Economics 7(3), 229-263.
    Derman, E. and I. Kani (1998), “Stochastic Implied Trees: Arbitrage Pricing with Stochastic Term and Strike Structure of Volatility.” International Journal of Theoretical and Applied Finance 1, 7-22.
    Harrison, J. and S. Pliska (1981), “Martingales and Stochastic Integrals in the Theory of Continuous Time Trading.” Stochastic Processes and their Applications 11, 215-260.
    Haugh, M. (2004), “Martingale Pricing Theory.” Lecture Note, Department of Industrial Engineering and Operation Research, Columbia University.
    Ito K. (1951), “On Stochastic Differential Equation Memories.” American Mathematical Society 4, 1-51.
    Jackwerth, J. (1997), “Generalized Binomial Trees.” Journal of Derivatives 5(2), 7-17.
    Jackwerth, J. (1999), “Option-Implied Risk-Neutral Distributions and Implied Binomial Trees: A Literature Review.” Journal of Derivatives 7(2), 66-82.
    King, A. (2002), “Duality and Martingale: A Stochastic Programming Perspective on Contingent Claims.” Mathematical Programming Ser. B 91, 543-562.
    Melick, W. and C. Thomas (1997), “Recovering an Asset’s Implied PDF from Option Prices: An Application to Crude Oil During the Gulf Crisis.” Journal of Financial and Quantitative Analysis 32, 91-115.
    Rubinstein M. and J. Jackwerth (1997), “Recovering Probabilities and Risk Aversion from Option Prices and Realized Returns.” in: The Legacy of Fisher Black, editor: Bruce N. Lehmann, Oxford University Press, Oxford.
    Rubinstein, M. (1994), “Implied Binomial Trees.” Journal of Derivatives 49(3), 771-818.
    Sharpe, W. F. (1978), “Investments.” Prentice-Hall International.
    Sherrick, B., P. Garcia, and V. Tirupattur (1995), “Recovering Probabilistic Information from Option Markets: Tests of Distributional Assumptions.” Working paper, University of Illinois at Urbana-Champaign.
    楊靜宜 (2004),選擇權交易策略的整數線性規劃模型,政治大學應用數學研究所碩士論文。
    描述: 碩士
    國立政治大學
    應用數學研究所
    91751007
    93
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0917510071
    数据类型: thesis
    显示于类别:[應用數學系] 學位論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    51007101.pdf7KbAdobe PDF2697检视/开启
    51007102.pdf9KbAdobe PDF2738检视/开启
    51007103.pdf13KbAdobe PDF2654检视/开启
    51007104.pdf15KbAdobe PDF2658检视/开启
    51007105.pdf18KbAdobe PDF21044检视/开启
    51007106.pdf67KbAdobe PDF21425检视/开启
    51007107.pdf74KbAdobe PDF2845检视/开启
    51007108.pdf88KbAdobe PDF2800检视/开启
    51007109.pdf21KbAdobe PDF2810检视/开启
    51007110.pdf16KbAdobe PDF2654检视/开启
    51007111.pdf38KbAdobe PDF2672检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈