政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/32583
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 114205/145239 (79%)
造访人次 : 52493885      在线人数 : 754
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    政大機構典藏 > 理學院 > 應用數學系 > 學位論文 >  Item 140.119/32583


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/32583


    题名: 主成分選取與因子選取在費雪區別分析上的探討
    Discussion of the Fisher`s Discriminant Analysis Based on Choices of Principal Components and Factors
    作者: 李婉菁
    贡献者: 姜志銘
    李婉菁
    关键词: 主成分
    Principal Component
    日期: 2006
    上传时间: 2009-09-17 13:47:42 (UTC+8)
    摘要: 當我們的資料變數很多時,我們通常會使用主成分
    或因子來降低資料變數;
    在選取主成分與因子時,我們通常會以特徵值來做選擇,
    然而變異數大(亦即特徵值大)的主成分或因子雖然解釋了大部分變異,
    但卻不一定保留了最多後續要分析的資訊,
    例如利用由特徵值所選取出來最好的主成分或因子
    來當做區別資料之變數,所得結果不一定理想。
    在此我們假設資料是來自於兩個多維常態母體,
    我們將分別利用由Mardia等人 (1979) 和Chang (1983) 所提出的兩種方法
    來選取出具區別能力的主成分,將其區別結果與由特徵值所選取出最好的主成分
    之區別結果作一比較;並且將此二方法應用在選取因子上。
    同時我們也證明Mardia等人 (1979) 和Chang (1983)的方法對於
    主成分及因子(利用主成分方法轉換)有相同的選取順序。
    本文更進一步地將Mardia等人
    所提出之方法運用至三群資料上,探討當資料來自於三個
    多維常態母體時,我們該如何利用此方法來選取具區別能力之變數。
    Principal component analysis or factor analysis are often used
    to reduce the dimensionality of the original variables.
    However, the principal component or factor, which has
    larger variance (i.e eigenvalue) explaining larger proportion of total sample
    variance, may not retain the most information for other analyses later.
    For example, using the first few principal components or factors
    having the largest corresponding eigenvalues as
    discriminant variables, the discriminant result
    may not be good or even appropriate.

    \\hspace{2.05em}We first discuss two methods, given by Mardia et al. (1979) and Chang (1983)
    for choosing discriminant variables when data are randomly obtained from
    a mixture of two multivariate normal distributions.
    We then use the discriminant result (or classification error rates)
    to compare these two methods and the traditional method of using the
    principal components, which have the larger corresponding eigenvalues,
    as discriminant variables. We also prove that the both the two methods
    have the same selection order on principal components and factor (obtained
    by the principal component method).
    Furthermore, we use the method of
    Mardia et al. to select appropriate discriminators when data is from
    three populations.
    參考文獻: [1] Mardia K.V., Kent J.T. and Bibby J.M., Multivariate Analysis, Academic
    Press, (1979), 322–324.
    [2] Chang W.C., On using principal components before separating a mixture of two
    multivariate normal distributions, Appl. Statist., 32 (1983), 267–275.
    [3] Jolliffe I.T., Morgan B.J.T. and Young P.J., A simulation study of the use of
    principal components in linear discriminant analysis, J. Stat. Comput. Simul.,
    55 (1996), 353–366.
    [4] Jolliffe I.T., Morgan B.J.T. and Young P.J., A note on using principal components
    in linear discriminant analysis, (1995). Submitted for publication.
    http://citeseer.ist.psu.edu/jolliffe95note.html
    [5] Murry G.D., A cautionary note on selection of variables in discriminant analysis,
    Appl. Statist., 3 (1977), 246–250.
    [6] Namkoon G., Statistical analysis of introgression, Biomtrics, 22 (1966), 488–
    502.
    [7] Wolfe J.H., Computational methods for estimating the parameters of multivariate
    normal mixtures of distribution, U.S. Naval Personnel Research Activity,
    San Diego (1967), SRM 68–2.
    [8] Dillon W.R., Mulani N. and Frederick D.G., On the use of component scores
    in the presence of group structures, J. Consumer Research, 16 (1989), 106–112.
    [9] Kemsley E.K., Discriminant analysis of high-dimensional data: a comparsion
    of principal components analysis and least squares data reduction methods,
    Journal of Statistical Computitation and Simulation, 55 (1996), 353–366.
    [10] Song C.C., Jiang T.J. and Kuo K.L., On the Fisher’s discriminant analysis,
    Technical Report # NCCU 701-05-T04-01, Department of Mathematical Sciences,
    National Chengchi University.
    20
    [11] Jackson J.E., A user’s guide to principal components, Wiley, New York (1991).
    [12] Flury B.D., Developments In Principal Component Analysis, (1995), 14–23.
    [13] Johnson R.A., Wichern D.W., Alllied Multivariate Statistical Analysis, Prentice
    Hall, (2002).
    描述: 碩士
    國立政治大學
    應用數學研究所
    94751001
    95
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0094751001
    数据类型: thesis
    显示于类别:[應用數學系] 學位論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    100101.pdf81KbAdobe PDF2793检视/开启
    100102.pdf112KbAdobe PDF2857检视/开启
    100103.pdf38KbAdobe PDF2851检视/开启
    100104.pdf102KbAdobe PDF21070检视/开启
    100105.pdf39KbAdobe PDF2839检视/开启
    100106.pdf108KbAdobe PDF21390检视/开启
    100107.pdf110KbAdobe PDF21084检视/开启
    100108.pdf126KbAdobe PDF2995检视/开启
    100109.pdf40KbAdobe PDF2861检视/开启
    100110.pdf128KbAdobe PDF2938检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈