English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114205/145239 (79%)
Visitors : 52620407      Online Users : 379
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 應用數學系 > 學位論文 >  Item 140.119/32576
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/32576


    Title: 資料挖掘在房地產價格上之運用
    Data Mining Technique with an Application to the Real Estate Price Estimation
    Authors: 高健維
    Contributors: 吳柏林
    Wu,Berlin
    高健維
    Keywords: 資料挖掘
    Apriori演算法
    關聯法則
    複合維度關聯法則
    data mining
    Apriori algorithm
    association rules
    multi-dimensional association rules
    Date: 2006
    Issue Date: 2009-09-17 13:46:53 (UTC+8)
    Abstract: 在現今資訊潮流中,企業的龐大資料庫可藉由統計及人工智慧的科學技術尋找出有價值的隱藏事件。利用資料做深入分析,找出其中的知識,並根據企業的問題,建立不同的模型,進而提供企業進行決策時的參考依據。資料挖掘的工作是近年來資料庫應用領域中相當熱門的議題。它雖是個神奇又時髦的技術,卻不是一門創新的學問。美國政府在第二次世界大戰前,就於人口普查以及軍事方面使用資料挖掘的分析方法。隨著資訊科技的進展,新工具的出現,以及網路通訊技術的發展,常常能超越歸納範圍的關係來執行資料挖掘,而由資料堆中挖掘寶藏,使資料挖掘成為企業智慧的一部份。在本篇論文當中,將資料挖掘技術中的關聯法則 ( Association Rule ) 運用至房地產的價格分析,進而提供有效的關聯法則,對於複雜之房價與週邊環境因素作一整合探討。購屋者將有一適當依循的投資計畫,房產業者亦可針對適當的族群做出適當的銷售企畫。
    At this technological stream of time, it is able to extract the value of corporations’ large data sets by applying the knowledge of statistics and the scientific techniques from artificial intelligence. Through the use of these algorithms, the database will be analyzed and its knowledge will be generated. In addition to these, data models will be sorted by different corporation issues resulting in the reference for any strategic decision processes. More advantages are the predictions of future events and how much public is willing to contribute and feedback to new products or promotions. The probability of outcomes will be helpful as references since this information is referable to ensure companies providing quality services at the right time. In another words, companies will have clues in attempts to understand and familiarize their customers’ needs, wants and behaviors, as a result of delivering best services for customers’ satisfactions. Data mining is such a new knowledge that is commonly discussed in the field of database applications. Although it is a relatively new term, the technology is not exactly due to the analysis methods used. Before World War II, the analysis techniques were used in particular to the statistics in census or cases related to military affairs by the US government. Knowledge discovery has been one part of business intelligence in current corporations because these new techniques are inherently geared towards explicit information, rather than just simple analysis. By applying association rules from knowledge discovery technology, this dissertation will provide a discussion of price estimation in real estates. This discussion is involved in investigations into diverse housing prices resulting from the factors of surrounding environment. By referring to this association rule, buyers will acquire information about investment plans while housing agents will gain knowledge for their plans or projects in particular to their target markets.
    Reference: 黃興進、陳啟元、周宣光、高正雄 (2005),採用資料探勘技術建立不同醫院層級門診服務量預測模式,Journal of Taiwan Intelligent Technologies and Apply Statistics。
    林傑斌、劉明德 (2006),資料採掘與OLAP的理論與實務,台北:文魁資訊股份有限公司。
    朱建平 (2006),數據挖掘的統計方法及實踐,中國北京:中國統計出版社。
    吳柏林 (2005),模糊統計導論:方法與應用,台灣台北:五南圖書出版有限公司。
    Fayyad, U. M., Piatetsky-Shapiro, G., Smyth, P. and Uthurusamy, R., editors. 1996. Advances in Knowledge Discovery and Data Mining. AAAI/MIT Press, Menlo Park, CA.
    Han, J. and Fu, Y. Discovery of Multiple-Level Association Rules from Large Databases. Proc. of 1995 Int. Conf. on Very Large Data Bases(VLDB’95), Zich, Switzerland:420-431.
    Kamber. M , Han, Chiang Metarule-guided mining of multi-dimensional association rules using data cubes. BC, Canada V56A 1S6 (1997).
    R. Meersman. On the complexity of mining quantitative association rules. In Data Mining and Knowledge Discovery,2,263-281,1998.
    Ozden, B., S. Ramaswamy. and A. Silberschatz. 1998. Cyclic Association Rules. Proc. of 1998 Int. Conf. Data Engineering(ICDE’98):412-421.
    Piatetsky-Shapiro, G. and Frawley, W. J., editors, 1991. Knowledge Discovery in Databases, AAAI/MIT Pres, Menlo Park, CA.
    T. Fukuda,Y. Morimoto, S. Morishita, and T. Tokuyama. Data mining using two-dimensional optimized association rules: Scheme, algorithms, and visualization. In Pro. ACM SIGMOD Int. Conf. Management of Data, pages13-23, Montreal, Canada, 1996.
    T. Brij, G. Swinnen, K. Vanhoof, and G. Wets. Building an association rules framework to improve product assortment decisions. In Data Mining and Knowledge Discovery, pages7-23, 2004.
    Y. Aumann., and Y. Lindell. A statistical theory for quantitative association rules. In Journal of Intelligent Information System, pages 255-283, 2003.
    Description: 碩士
    國立政治大學
    應用數學研究所
    93751006
    95
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0093751006
    Data Type: thesis
    Appears in Collections:[應用數學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    75100601.pdf42KbAdobe PDF2899View/Open
    75100602.pdf67KbAdobe PDF2806View/Open
    75100603.pdf13KbAdobe PDF2768View/Open
    75100604.pdf49KbAdobe PDF2809View/Open
    75100605.pdf85KbAdobe PDF21094View/Open
    75100606.pdf119KbAdobe PDF220745View/Open
    75100607.pdf280KbAdobe PDF23791View/Open
    75100608.pdf155KbAdobe PDF21958View/Open
    75100609.pdf143KbAdobe PDF23382View/Open
    75100610.pdf90KbAdobe PDF21184View/Open
    75100611.pdf56KbAdobe PDF2894View/Open
    75100612.pdf80KbAdobe PDF2856View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback