English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114205/145239 (79%)
Visitors : 52689036      Online Users : 225
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 應用數學系 > 學位論文 >  Item 140.119/32571
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/32571


    Title: 粗化數據之統計分析
    Statistucal Analysis with Coarse Data
    Authors: 陳宗萍
    Contributors: 吳柏林
    陳宗萍
    Keywords: 粗化數據
    隨機集合
    隸屬度函數
    Date: 2007
    Issue Date: 2009-09-17 13:46:17 (UTC+8)
    Abstract: 本文討論在抽樣調查中被視為隨機集合模型的樣本,並試著架構基於模糊統計邏輯的粗化數據(coarse data)之理論與特性。因為有些抽樣調查中的數據可以視為隨機集合模型所得出的新數據。如何應用數學分析方法,配合軟計算技術以達到有效之資料處理與統計分析就是本研究之重點。我們將隨機抽樣樣本當作隨機實驗所做出來的結果,而這個論點可以幫助我們分析粗化數據。在探索抽樣調查的隨機集合和分佈的時候,機率測度論提供了很多種非精確數據給予統計學推測結論(statistical inference),我們推廣傳統理論,以模糊集合及隸屬度為基礎,作為集合元素運算之依據。
    關鍵字:粗化數據、隨機集合、隸屬度函數
    In this paper we discuss the sample in the random set model for the sampling survey. Since the data from sampling survey can be treated as a new type of data from the random set model. How to apply the mathematical analyzing methods as well as soft computing techniques to reach an efficient propose is our main goal. We treat random sampling data as the result of random experimental design. And this concept will help us to analyze the coarse data. Finally, in investigating the random set and its distributions for the random sampling survey, traditional probability measure theory serves an important role in the statistical inference, while we use the membership function and fuzzy operations to extend traditional concept into a more general case.
    Keywords: Coarse data, Random set, Membership function
    Reference: 1. Aigner, M. (1979), Combinatorial Theory, Springer-Verlag, N. Y.
    2. Aumann, R. J. and Shapley, L. S. (1974), Values of Non-Atomic Games, Princeton University Press, Princeton, NJ.
    3. Deville, J. C. and Sarndal, C. E. (1992), Calibration Estimators in Survey Sampling, Journal of the American Statistical Association 87, 376-382.
    4. Foreman, E. K. (1991), Survey Sampling Principles, Marcel-Dekker, N. Y.
    5. Georges, M. (1975), Random Sets and Integral Geometry, Wiley, N. Y.
    6. Goodman, P. S. (1982), Social Comparison Processes in Organizations, In B. Staw and G. Salancik (Ends) New directions in organizational behavior, Malabar, FL: Krieger, 97-132.
    7. Goutsias, J., Mahler, R., and Nguyen, H. T. (1997). Random Sets: Theory and Applications, Springer-Verlag, N. Y.
    8. Hajek, J. (1981), Sampling from a Finite Population, Marcel-Dekker, N. Y.
    9. Hartigan, J. A. (1975), Clustering Algorithms, Wiley.
    10. Heitjan, D. F. and Rubin, D. B. (1991), Ignorability and Coarse Data, Ann. Math. Statis 23, 774-786.
    11. Knottnerus, P. (2003), Sample Survey Theory, Springer-Verlag, N. Y.
    12. Li, B. and Wang, T. (2004), Computational Aspects of the CAR Model and the Shapley Value, to appear in J. Information Sciences.
    13. Mosteller, F. and Youtz, C. (1990), Quantifying Probabilistic Expressions, J. Statist. Sci 15, 2-34.
    14. Nguyen, H. (2002), Random Sets for Statistics, Lukacs Lecture Notes, Bowling Green State University, Ohio.
    15. Nguyen, H. (2005), An Introduction to Random Sets, Chapman and Hall/CRC, Boca Raton, Florida.
    16. Nguyen, H. and Wang. T. (2004), A First Course in Probability and Statistics, Volume I, Tsinghua University Press, Beijing.
    17. Nguyen, H. and Wu, B. (2006), Random and Fuzzy Sets in Coarse Data Analysis, Computational Statistics and Data Analysis 51, 70-85.
    18. Norberg, T. (1992), On the Existence of Ordered Couplings of Random Sets with Applications, Israel J. Math 17, 241-264.
    19. Robbins, H. E. (1944), On the Measure of a Random Set, Ann. Math. Statist 15, 70-74.
    20. Sarndal, C. E., Swensson, B., and Wretman, J. (1992), Model Assisted Survey Sampling, Springer-Verlag, N. Y.
    21. Zimmermann, H. J. (1991), Fuzzy Set Theory and its Applications, Kluwer, Dordrecht.
    Description: 碩士
    國立政治大學
    應用數學研究所
    91751018
    96
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0091751018
    Data Type: thesis
    Appears in Collections:[應用數學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    75101801.pdf41KbAdobe PDF2713View/Open
    75101802.pdf86KbAdobe PDF2701View/Open
    75101803.pdf67KbAdobe PDF2610View/Open
    75101804.pdf98KbAdobe PDF2807View/Open
    75101805.pdf235KbAdobe PDF2795View/Open
    75101806.pdf301KbAdobe PDF21682View/Open
    75101807.pdf114KbAdobe PDF2690View/Open
    75101808.pdf46KbAdobe PDF2799View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback