English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114205/145239 (79%)
Visitors : 53000691      Online Users : 392
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 應用數學系 > 學位論文 >  Item 140.119/32568
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/32568


    Title: Invariant Subspace of Solving Ck/Cm/1
    計算 Ck/Cm/1 的機率分配之不變子空間
    Authors: 劉心怡
    Liu,Hsin-Yi
    Contributors: 陸行
    劉心怡
    Liu,Hsin-Yi
    Keywords: 不變子空間
    矩陣多項式
    飽和機率
    invariant subspace
    matrix polynomial
    Kronecker products
    Date: 2003
    Issue Date: 2009-09-17 13:45:59 (UTC+8)
    Abstract: 在這一篇論文中,我們討論 Ck/Cm/1 的等候系統。 我們利用矩陣多項式的奇異點及向量造 C_k/C_m/1 的機率分配的解空間。而矩陣多項式的非零奇異點和一個由抵達間隔時間與服務時間所形成的方程式有密切的關係。我們證明了在 E_k/E_m/1 的等候系統中,方程式的所有根都是相異的。但是當方程式有重根時,我們必須解一組相當複雜的方程式才能得到構成解空間的向量。此外,我們建立了一個描述飽和機率為 Kronecker products 線性組合的演算方法。
    In this thesis, we analyze the single server queueing system
    Ck/Cm/1. We construct a general solution space of the vector for stationary probability and describe the solution space in terms of singularities and vectors of the fundamental matrix polynomial Q(w). There is a relation between the singularities of Q(w) and the roots of the characteristic polynomial
    involving the Laplace transforms of the interarrival and service
    times distributions. In the Ek/Em/1 queueing system, it is proved that the roots of the characteristic polynomial are
    distinct if the arrival and service rates are real. When
    multiple roots occur, one needs to solve a set of equations of matrix polynomials. As a result, we establish a procedure for describing those vectors used in the expression of saturated probability as linear combination of Kronecker products.
    Reference: [1] Bellman R. Introduction to Matrix Analysis, MacGraw-
    Hill, London, (1960).
    [2] Bertsimas D., An analytic approach to a general class of
    G/G/s queueing systems. Operations Research 38,139-155,
    (1990).
    [3] Bertsimas D., An exact FCFS waiting time analysis for a
    general class of G/G/s queueing systems. Queueing systems
    3, 305-320, (1988).
    [4] Le Boudec, J. Y., Steady-state probabilities of the
    PH/PH/1 queue. Queueing systems 3, 73-88, (1988).
    [5] Evans, R. V. Geometric distribution in some two-
    dimensional queueing systems. Operations Research 15, 830-
    846, (1967).
    [6] Gail, H. R., Hantler, S. L. and Taylor, B., A Spectral
    analysis of M/G/1 and G/M/1 Type Markov chaons. Adv.
    Appl. Prob. 28, 114-165, (1996).
    [7] Gohberg, I. C., Lancaster, P. and Rodman, L. Matrix
    polynomials. Academic Press, New York (1982).
    [8] Gohberg, I. C., Lancaster, P. and Rodman, L. Matrix Topics
    in Matrix (1991).
    [9] Neuts, M. F. Matrix-Geomatric Solutions in Stochastic
    Models. The John Hopkins University Press, (1981).
    [10] Wang, H. S. A new Approach to Analyze Stationary
    Probabilities Distributions of a PH/PH/1/N Queue, Master
    thesis National Chengchi University, (2002).
    [11] Wallace, V. The solution of quasi birth and death
    processes arising from multiple access computer systems,
    Ph. D. diss. Systems Engineering Laboratory, University
    of Michigan, Tech. Report N 07742-6-T, (1969).
    Description: 碩士
    國立政治大學
    應用數學研究所
    91751006
    92
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0091751006
    Data Type: thesis
    Appears in Collections:[應用數學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    75100601.pdf94KbAdobe PDF2951View/Open
    75100602.pdf161KbAdobe PDF21078View/Open
    75100603.pdf170KbAdobe PDF21050View/Open
    75100604.pdf63KbAdobe PDF21123View/Open
    75100605.pdf120KbAdobe PDF21145View/Open
    75100606.pdf163KbAdobe PDF21302View/Open
    75100607.pdf150KbAdobe PDF21192View/Open
    75100608.pdf192KbAdobe PDF21199View/Open
    75100609.pdf59KbAdobe PDF21027View/Open
    75100610.pdf68KbAdobe PDF21151View/Open
    75100611.pdf98KbAdobe PDF2968View/Open
    75100612.pdf108KbAdobe PDF21035View/Open
    75100613.pdf84KbAdobe PDF21040View/Open
    75100614.pdf85KbAdobe PDF21002View/Open
    75100615.pdf117KbAdobe PDF21056View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback